
The Journal of Computer Science and its Applications Vol. 24, No 2, December,
2017

120

COMPARATIVE ANALYSIS OF TEXT
CATEGORIZATION ALGORITHMS

1A. P. Adewole and 2D. M. Omitiran
1,2Department of Computer Science, University of Lagos, Lagos, Nigeria

1philipwole@yahoo.com; 2omitirand@gmail.com

ABSTRACT

Text categorization (also known as text classification) is the task of automatically assigning
documents to a category (or categories) from a pre-specified set. This task has several
applications, including spam filtering, identification of document genre, automated indexing
of scientific articles according to a predefined thesauri of technical terms, and even the
automated extraction of metadata. The importance of text categorization cannot be
overemphasized due to the fact that unstructured texts are the largest readily available source
of data and manual organization of this data is infeasible due to the large number of
documents involved as well as time constraints. The accuracy of modern text categorization
machines rivals that of trained human professionals. This study experimentally compared
four machine learning classifiers used in text categorization. These algorithms are; Naïve
Bayes, Decision trees, k-Nearest Neighbour (kNN) and Support Vector Machines (SVM).
These classifiers were developed using Python programming language. When run on the
Reuters dataset, SVM significantly outperforms Naïve Bayes, kNN and Decision Trees.
Decision trees performed worst of the four algorithms considered in this study. From
observations made during the course of running these experiments, there seems to be a trade-
off between simplicity and effectiveness. In conclusion, the results of this comparative
analysis prove that SVM is the most effective of the classifiers considered in this study.

Keywords: classifier, Decision trees, k-Nearest Neighbour (kNN), Machine learning ,Naïve
Bayes, Support Vector Machines (SVM), text categorization, text classification

1.0 INTRODUCTION

The increase in the number of documents
stored in electronic form and the resulting
need to assess them in flexible ways has led
to an increase in the significance of text
mining. Over 80% of electronic data is in the
form of text [6]. Thus, unstructured texts are

the largest readily available sources of
knowledge. If these textual data are properly
organized, then retrieval as well as analysis
can be greatly simplified. The Internet has led
to the exponential growth of these documents,
as well as the inevitable need of automatic

THE JOURNAL OF COMPUTER
SCIENCE AND ITS APPLICATIONS
Vol. 24, No 2, December, 2017

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

121

methods for the purpose of organizing and
classifying them.

The most common theme in the analysis of
complex data (structured or not) is the
classification, or categorization, of elements.
Defined abstractly, this is the association of a
given data instance to a pre-specified set of
categories. In the context of document
management, categorization (more
specifically text categorization) refers to the
assignment of documents to a set of given
categories based on the textual content of
each of the documents. In other words, text
categorization (TC- a.k.a. text classification)
is the process of finding the correct category
(or categories) from a given set of categories
for each document in the document
collection.

There are two main approaches to text
categorization. The first is the knowledge
engineering approach, in which the expert’s
knowledge about the categories (and the
classification of documents into these
categories) is manually encoded into the
system either declaratively or in the form of
procedural classification rules. The
knowledge engineering approach was used in
the development of real-world TC
applications until the 1990s, a time in which
this approach lost popularity (especially in the
research community) to the second approach,
the machine learning approach [2]. The
machine learning approach involves building
a classifier by learning from a set of pre-
classified examples via a general inductive
process.

The general text categorization task can be
formally defined as the task of approximating
an unknown category assignment function F:
D x C {0, 1}, where D is the set of all
possible documents and C is the set of pre-
defined categories [5]. The value of F(d, c)
for d ϵ D and c ϵ C is 1 if the document d
belongs to the category c and 0 otherwise.

The task of the machine learning approach to
text categorization is to build the
approximating function M: D x C {0, 1}
that produces results as “close” as possible to

the true category assignment function F. This
approximating function M is called the
classifier.

The machine learning approach uses a
training set and a test set for classification.
The training set contains input feature vectors
and their corresponding category labels. A
classification model is built using the training
set; the model attempts to classify the input
feature vectors into corresponding category
labels. Then a test set is used to validate the
model by predicting the categories of feature
vectors whose category labels are unseen.

This study focuses on the evaluation of
different algorithms under the machine
learning approach to text categorization,
namely: Naïve Bayes, Decision Trees, k-
Nearest Neighbour (kNN) and Support Vector
Machines (SVM).

2.0 METHODOLOGY

2.1 Dataset Preparation

For this study, the Reuters-21578 dataset
compiled by David Lewis was used. Lewis’s
standard modApté train/test split was also
used. The documents in this dataset appeared
on the Reuters newswire in 1987 and were
manually classified by personnel from
Reuters Ltd. The dataset consists of 12902
documents, with the modApté split leading to
9603 training documents and 3299 test
documents. The dataset consists of 135
categories, of which only 90 possess at least
one training and one test example.

The dataset is a multi-label dataset. This work
is focused on single-label categorization; thus
only documents belonging to a single
category are included. Some categories have
only multi-class documents belonging to
them, and thus are also excluded as well.
Categories with less than 30 training
examples were excluded as well.

This gives us 6241 training documents and
2408 test documents, with 21 categories. The
training documents are used for training the
model, whereas the test set is used for
evaluating the performance of the classifiers.

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

122

.

Table 1: Experimental Dataset: Reuters-21578

CATEGORY TRAINING DOCS TEST DOCS TOTAL
acq 1596 696 2292

alum 31 19 50
cocoa 46 15 61
coffee 90 22 112
copper 31 13 44

cpi 54 17 71
crude 253 121 374
earn 2840 1083 3923
gnp 59 15 74
gold 70 20 90
grain 41 10 51

interest 191 81 272
ipi 34 11 45

jobs 37 12 49
money-fx 222 87 309

money-supply 123 28 151
reserves 37 12 49
rubber 31 9 40
Ship 108 36 144
Sugar 97 25 122
Trade 250 76 326

TOTAL 6241 2408 8649

The machine learning approach constructs a
model from the training set through the use of
the aforementioned algorithms. This model is
then used to classify the documents in the test
set.

The methodology for the machine learning
approach used in this work can be described
with the following steps:

1. Pre-processing: Before the classifiers
could be trained, the documents
needed to be pre-processed. This step
was performed by punctuation
removal, stop word removal,
stemming and tokenization.

2. Feature Generation: The documents
were transformed into a bag-of-words
model, and the features used were the
tokens gotten from pre-processing.

3. Feature Selection: A feature space of
16084 features was produced after

feature generation was carried out.
Dimensionality reduction had to be
performed, and the best features were
to be selected so as to improve
classifier performance. For this
reason, information gain was used.
The top 200 features, ranked
according to information gain, were
selected.

4. Training and Testing: Each of the
documents were represented by the
selected features, the values of which
were dependent on the algorithm used.
In this format, the documents were
used for classifier training and testing,
and the resulting metrics were
computed.

2.2 Naïve Bayes

The Naïve Bayes algorithm is a probabilistic
classifier. In this algorithm, the categorization

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

123

status value CSV(d, c) is calculated as the
probability P(c | d) that the document belongs

to a category. This probability is computed by
the application of Bayes’ theorem:

 𝑃(𝑐|𝑑) =
𝑃(𝑑|𝑐)𝑃(𝑐)

𝑃(𝑑)
 (1)

There is no need to calculate the document
probability P(d) because it is constant for all

categories. Thus the equation can be reduced
to:

 𝑃(𝑐|𝑑) = 𝑃(𝑑|𝑐)𝑃(𝑐) (2)

Where P(c) = the independent probability of
c (also known as the prior probability)

P(d|c) = the conditional probability of c given
d (also known as the likelihood)

P(c|d) = the conditional probability of d given
c (also known as the posterior probability)

The prior probability P(c) is the probability
that a document in the training set belongs to
category c. Thus if NC is the number of
training documents that belong to the
category c and N is the total number of
training documents, then the prior probability
is

 𝑃(𝑐) =
𝑁𝐶
𝑁

 (3)

Since each document is represented as a set of feature vectors (𝑤1, 𝑤2, … , 𝑤𝑘), then the likelihood
is calculated as

 𝑃(𝑑|𝑐) = �𝑃(
𝑘

𝑖

𝑤𝑖|𝑐) (4)

The probability 𝑃(𝑤𝑖|𝑐) is the probability that
a feature 𝑤𝑖 appears in the category𝑐. The

multinomial Naïve Bayes model was
implemented in this study. This means that

 𝑃(𝑤𝑖|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖 , 𝑐)
𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐) (5)

Where count(wi, c) = number of times wi
appears in all documents belonging to
category c,

count(w, c) = total number of words in all
documents belonging to category c.

The problem with equation (5) is that it does
not consider the fact that some of these
features may not occur in the documents
belonging to some categories. Going by this
equation, if a word from a document d does
not appear in the documents belonging to a

particular category c, then the document d
does not belong to category c. This problem is
called the Zero Probability Problem.

A simple way to alleviate this problem is
called add one smoothing. As the name
implies, a count of one is added to each
feature count. The denominator is also
increased as well so as to ensure that the
probabilities are normalised.

 𝑃(𝑤𝑖|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖 , 𝑐) + 1

𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦) (6)

The training stage simply involved the
calculation and storage of the prior
probabilities P(c) and likelihoods 𝑃(𝑤𝑖|𝑐)for

all categories and features. Classification was
then performed by the equation below:

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

124

𝑐𝑁𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∈𝐶 𝑃(𝑐)�𝑃(
𝑘

𝑖

𝑤𝑖|𝑐) (7)

The multinomial model of the Naïve Bayes
algorithm was implemented; the term-
frequency (TF) scheme was used for

assigning weights to each feature in the
feature vector.

2.3 Decision Tree Classifiers

A decision tree (DT) classifier is a tree in
which the internal nodes are labelled by the
features, the edges leaving the nodes are
labelled by tests on the feature’s weight, and
the leaves are labelled by categories. A DT
categorizes a document by starting from the
root of the tree and moving successively
downwards via branches whose conditions
are satisfied by the document until a leaf node
is reached. The document is then assigned to
the category that labels this leaf node. Most of
the DT classifiers use a binary representation,
and thus the trees are binary.

Typically, the tree is built recursively by
selecting a feature f at each step and splitting
the training collection into two sub
collections, one containing f and the other not

containing f, until only documents of a single
category remain – at which point a leaf node
is generated. The key step is the choice of a
feature at each step, and this choice is made
by some information-theoretic measure.

The ID3 algorithm was used for the
construction of the decision tree. ID3 uses
information gain as its splitting criterion. In
other words, ID3 uses information gain to
select a feature on which to split at every step
while growing the tree. Information gain
measures how well a feature splits the
training examples according to their target
category.

Information gain cannot be precisely defined
without defining an information theory
measure called entropy. Entropy is the degree
of impurity of an arbitrary collection of
training examples. The entropy of a collection
D is given as:

 𝐻(𝐷) = −� 𝑃(𝑐𝑖) ∙ log𝑃(𝑐𝑖)
|𝐶|

𝑖
 (8)

Where 𝑃(𝑐𝑖) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑛 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐷 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑐𝑖

Note that if 𝑃(𝑐𝑖) = 0, then𝑃(𝑐𝑖) ∙ log𝑃(𝑐𝑖) = 0. If the entropy of a document collection is zero,
then it means the documents are homogeneous, that is, all the documents in the collection belong to
only one category.

In terms of entropy, the information gain of a feature was calculated as:

 𝐼𝐺(𝑤) = 𝐻(𝐷) − 𝐻(𝐷|𝑤) (9)

Where 𝐻(𝐷) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐷,𝑎𝑛𝑑

𝐻(𝐷|𝑤) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐷 𝑎𝑓𝑡𝑒𝑟 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑤.

A binary representation of the features were used in the feature vector space for the construction of
the decision tree. This resulted in a binary tree, in which splitting on a feature w results in two
subsets of the original collection: documents containing w and documents that do not contain w.

𝐻(𝐷|𝑤) = −𝑃(𝑤)� 𝑃(𝑐𝑖|𝑤) ∙ log𝑃(𝑐𝑖|𝑤)
|𝐶|

𝑖
− 𝑃(𝑤�)� 𝑃(𝑐𝑖|𝑤�) ∙ log𝑃(𝑐𝑖|𝑤�)

|𝐶|

𝑖
 (10)

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

125

Thus information gain is calculated as

 𝐼𝐺(𝑤) = −� 𝑃(𝑐𝑖) ∙ log𝑃(𝑐𝑖)
|𝐶|

𝑖
+ 𝑃(𝑤)� 𝑃(𝑐𝑖|𝑤) ∙ log𝑃(𝑐𝑖|𝑤)

|𝐶|

𝑖

+ 𝑃(𝑤�)� 𝑃(𝑐𝑖|𝑤�) ∙ log𝑃(𝑐𝑖|𝑤�)
|𝐶|

𝑖
 (11)

The feature with the highest information gain
is selected, and the collection is split on that
feature. This is carried out recursively until
the collection at a node is homogenous or all

features have an information gain of zero.
This node is then assigned the category of the
homogenous documents.

2.4 K-Nearest Neighbour

The k-Nearest Neighbour algorithm (kNN) is
the most prominent example of example-
based classifiers. Example-based classifiers
do not build explicit declarative
representations of categories but instead rely
on computing the similarity between the
document to be classified and the training
documents. Example-based classifiers are
also called instanced-based or lazy learners
because they defer the decision on how to
generalize beyond the training data until each
new query instance is encountered.
“Training” for such classifiers consists of
simply storing the representations of the

training documents together with their
category labels.

The kNN algorithm is a very fundamental and
simple algorithm. It is often the first choice
for a classification study when there is little
or no prior knowledge about the distribution
of data. To classify a document d, kNN
checks for the category with the maximum
number of documents in k training documents
most similar to d.

The kNN algorithm checks for the category
with the maximum number of documents in k
training documents most similar to the
document it wants to classify and assigns that
category to it.

The measure of similarity used in this report was the Euclidean distance.

 𝑑(𝑝, 𝑞) = �(𝑤𝑝1 − 𝑤𝑞1)2 + (𝑤𝑝2 − 𝑤𝑞2)2+. . . + (𝑤𝑝𝑛 − 𝑤𝑞𝑛)2 (12)

Where 𝑝 and 𝑞 are documents and 𝑤𝑝𝑖and 𝑤𝑞𝑖 represent the features.

The optimal value of k was found to be 5
after multiple experiments. Tf-Idf scheme
was used for assigning weights to each
feature in the feature vector. Normalization
was also carried out on each document vector.

The kNN algorithm is one the best-
performing classifiers today. It is quite robust,
as it does not require categories to be linearly
separated. It is also very scalable to large TC
applications. Its only drawback is the
relatively high computational cost of
classification – that is, for each test document,

its similarity to all of the training documents
must be computed.

2.5 Support Vector Machines

The support vector machine (SVM) algorithm
is very effective for text classification.The
traditional SVM algorithm is a binary linear
classification algorithm that linearly separates
the positive instances from the negative
instances in the feature space. The SVM
algorithm was introduced in TC by [3].

Comparative Analysis of Text Categorization Algorithms
A. P. Adewole and D. M. Omitiran

126

Geometrically speaking, the SVM algorithm
attempts to find an (n-1)-dimensional
hyperplane which separates the two classes
(where n is the number of features). The
hyperplane that separates the positive and
negative instances by the widest possible
margin is selected as the classifying
hyperplane during training. The margin is the
distance from the hyperplane to the nearest
point from the positive and negative sets.

SVM is also capable of performing non-linear
classifications. This is done by the use of
what is called the Kernel trick, which
involves implicitly mapping the training
instances into a higher-dimensional feature
spaces. Linear classification can then be
(presumably) performed in this higher-
dimensional feature space. Non-linear
classification can still be carried out even if
the two classes are linearly separable.

An interesting attribute of SVM is the fact
that its hyperplanes are determined by a

relatively small subset of the training
instances, which are called the support
vectors. The rest of the training data have no
influence on the trained classifier.

The SVM classifier has an important
advantage in its theoretically justified
approach to the overfitting problem, and thus
performs well even in high-dimensional
feature spaces.

The SVM algorithm constructs an optimal
hyperplane which separates the training set
into two. Since the classifier is binary, one-
vs-all (OVA) classification was used; thus an
SVM classifier had to be constructed for each
category in this study. 21 SVM classifiers
were constructed as a result.

The constructed hyperplanes are soft margin
in nature. The linear kernel was used, because
of its suitability for textual data and the fact
that it’s less computationally expensive than
other kernels.

The optimal hyperplane 𝐻0 in the feature space is represented as:

𝑤� ∙ 𝑥̅ + 𝑏 = 0 (13)

[1] proved the weight vector 𝑤���� (which determines the optimal hyperplane) as a linear
combination of vectors:

𝑤� = �𝛼𝑖

𝑛

𝑖

𝑦𝑖 (14)

Substitution of the value of 𝑤� in the equation (14)gives:

�𝛼𝑖

𝑛

𝑖

𝑦𝑖𝑥̅𝑖 ∙ 𝑥̅ + 𝑏 (15)

In order to get the values of 𝑤� and 𝑏, the quadratic optimization problem in the equations

below was solved using CVXOPT.

min𝛼𝑇1 −
1
2
𝛼𝑇𝑲𝛼 (16)

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶 (17)

𝑎𝑛𝑑 𝛼𝑇𝑌 = 0 (18)

Where 𝑲𝒊𝒋 = 𝑦𝑖𝑦𝑗𝑥𝑖 ∙ 𝑥𝑗 and C is the soft-margin constant. This optimal value of this

constant was found to be 0.01 after multiple experiments.

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

127

For each category, the Lagrange multipliers for all the document vectors were calculated, as

well as the bias. Classification was then performed by the equation below:

𝐶𝑆𝑉𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∈𝐶�𝛼𝐶𝑖

𝑛

𝑖

𝑦𝐶𝑖𝑥̅𝐶𝑖 ∙ 𝑥̅ + 𝑏𝐶 (19)

Tf-Idf scheme was used for assigning weights
to each feature in the feature vector.
Normalization was also carried out on each
document vector. Feature standardization was
performed on the dataset as well.

While SVM is a very effective classifier, it
possesses some drawbacks as well. SVM is
quite complex (relative to other classification
algorithms), and parameter optimization is
usually time-consuming and computationally
expensive.

3.0 PERFORMANCE MEASURES

The performance measures used in this study
are the classic IR (Information Retrieval)
measures of accuracy, recall and precision.
The accuracy is the percentage of all correctly
classified documents among all the test
documents. The recall for a category is
defined as the percentage of correctly

classified documents among all documents
belonging to that category. The precision is
the percentage of correctly classified
documents among all documents that were
assigned to the category by the classifier.

In IR, a perfect precision score of 100% for a
category c means that every document
assigned to the category c by the classifier
belongs to category c. This however does not
mean that all documents belonging to
category c were assigned to category c.
Likewise, a perfect recall score of 100% for a
category c means that all documents
belonging to the category c were assigned to c
by the classifier (but does not mean the
absence of documents incorrectly labelled as
belonging to category c).

These values can be estimated in terms of the
contingency table provided in table 3 below
for category 𝑐𝑖on a given test set.

Table 3: Contingency table for category 𝑐𝑖on a given test set.

 EXPERT YES EXPERT NO
Classifier YES True Positives (𝑇𝑃𝑖) False Positives (𝐹𝑃𝑖)
Classifier NO False Negatives (𝐹𝑁𝑖) True Negatives (𝑇𝑁𝑖)
With respect to category𝑐𝑖,

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
 (20)

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 (21)

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 (22)

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

128

Often, there is an inverse relationship
between recall and precision. Many classifiers
allow trading recall for precision or vice versa
by raising or lowering parameter settings or
the output threshold. For such classifiers there
is a convenient measure, called the breakeven

point, which is the value of recall and
precision at the point on the recall-versus-
precision curve where they are equal.
Alternatively, there is the F1 measure, which
combines the two measures in an ad hoc way.

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 (23)

For obtaining the values of precision and
recall in this study, macroaveragingwas
applied. Macroaveraging is usually the
method of choice in TC, since producing
classifiers that perform well on infrequent
categories is the most challenging problem of

TC.Precision and recall were calculated
“locally” per category, and then “globally” by
averaging over the results of different
categories. The performance of the classifier
in low-populated categories is emphasized
here. Each category is given an equal weight.

𝑟𝑒𝑐𝑎𝑙𝑙𝑀 =
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

|𝐶|
𝑖

|𝐶|
 (24)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 =
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

|𝐶|
𝑖

|𝐶|
 (25)

4.0 DISCUSSION OF RESULTS

The evaluation of the effectiveness of the
methodologies described in the previous
chapter is carried out in this chapter. In more
specific terms, the machine learning
algorithms are compared using IR
(Information Retrieval) performance metrics.

Each algorithm was evaluated in terms of
accuracy, macro average precision, recall and
F1. The results of this experiment are shown
in Tables 4, 5 and 6.

Results

1. Comparison of correctly categorized
documents: As it can be seen in Table
4, the percentage of documents
correctly categorized by SVM is
slightly higher than kNN’s, which is
slightly higher than Naïve Bayes’.
Decision Trees have the worst
performance of the four.

2. Comparison of Accuracy: All the four
algorithms have high accuracies, and
this is due to the fact that the number
of true negatives for each category is
quite high for each algorithm. Once
again, SVM has the best performance,
decision trees have the worst
performance, while kNN and Naïve
Bayes are in between. This can be
observed in Table 5.

3. Comparison of performance measures:
A critical look at Table 6 shows that
Decision trees’ performance in the
individual categories is a lot lower
than that of the other three algorithms.
kNN has the highest precision, while
SVM has the highest recall and F1
measure. This means that kNN is the
most exact algorithm of the three
(lowest false positives per category)
and SVM is the most complete (lowest
number of false negatives per
category).

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

129

Table 4: Correctly Categorized Documents

ALGORITHM CORRECT (%)
Naïve Bayes 91.74
kNN 91.78
Decision Trees 86.09
SVM 93.48

Table 5: Accuracy

ALGORITHM ACCURACY
Naïve Bayes 99.21
kNN 99.22
Decision Trees 98.67
SVM 99.38

Table 6 Macro average Recall, Precision and F1 Measure

ALGORITHM RECALL PRECISION F1 MEASURE
Naïve Bayes 84.51 81.75 83.11
Knn 83.67 88.83 86.17
Decision Trees 66.06 74.35 69.96
SVM 87.60 86.67 87.13

Comparative Analysis of Text Categorization Algorithms
A. P. Adewole and D. M. Omitiran

130

Fig .1 Correctly Categorized Documents. SVM correctly categorized more documents than the
others, albeit slightly more than kNN and Naïve Bayes.

Fig 2 Accuracy of the Algorithms. All the algorithms obtained high accuracies due to the high
number of true negatives in each category.

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

131

Fig. 3 Recall of the Algorithms. SVM has the highest recall. The recall of Decision Trees is
significantly lower than the other algorithms.

Fig. 4 Precision of the Algorithms. kNN obtained the highest precision.

Comparative Analysis of Text Categorization Algorithms
A. P. Adewole and D. M. Omitiran

132

Fig. 5 F1 Score of the Algorithms. SVM has the highest F1 Score.

5.0 CONCLUSION AND FUTURE
WORK

4.1 Conclusion

This study provided a thorough comparison
of four machine learning text categorization
algorithms namely; Naïve Bayes, k-Nearest
Neighbour, Decision Trees and Support
Vector Machines. Different heuristics were
proposed to highlight their differences,
strength and weaknesses, as well as to
compare the results. The evaluation of the
results showed that SVM outperformed the
remaining three algorithms. The overall
effectiveness of Decision Trees was
significantly lower than the other algorithms,
thus justifying why decision trees are majorly
used as baseline classifiers today.

4.2 Future Work

There are a number of ways in which this
work can be expanded. An improvement
could involve the use of Latent Semantic
Indexing for feature extraction instead of
information gain. Another way in which this
study could be improved is to compare the

individual algorithms with a classifier
committee consisting of these algorithms.

REFERENCES

[1]. Cortes and Vapnik (1995). Support
Vector Networks. Journal of Machine
Learning, 20(1), pp. 277-284. Publisher:
Kluwer Academic Publishers, Boston.

[2]. Fabrizio Sebastiani(2002). Machine
Learning in Automated Text Categorization.
ACM Computing Surveys, 34(1), pp. 2-43.

 [3]. Joachims, T. (1998). Text categorization
with support vector machines: learning with
many relevant features. In Proceedings of
ECML-98, 10th European Conference on
Machine Learning (Chemnitz, DE, 1998), pp.
137–142.

[4]. Lewis, D. D. (1992a). An evaluation of
phrasal and clustered representations on a text
categorization task. In Proceedings of SIGIR-
92, 15th ACM International Conference on

The Journal of Computer Science and its Applications Vol. 24, No 2, December, 2017

133

Researchand Development in Information
Retrieval (Kobenhavn, DK, 1992), pp. 37–50.

[5]. Ronen Feldman, and James
Sanger(2007). The Text Mining HandBook,
Cambridge University Press, pp. 64-80.

 [6]. Vishal, G. and Gurpreet, S. L.(2009). A
Survey of Text Mining Techniques and
Applications Journal of Emerging
Technologies in Web Intelligence, (1) pp.1.

