STUDIES ON POTENTIALLY TOXIC METALS (PTMs) AND ANIONIC NUTRIENTS IN HIGHWAY RUNOFF AND ROADSIDE SOILS AND THEIR EFFECTS ON THE LAGOS LAGOON, NIGERIA

STUDIES ON POTENTIALLY TOXIC METALS (PTMs) AND ANIONIC NUTRIENTS IN HIGHWAY RUNOFF AND ROADSIDE SOILS AND THEIR EFFECTS ON THE LAGOS LAGOON, NIGERIA

A Thesis submitted to the Department of Chemistry, School of Postgraduate Studies, University of Lagos, Nigeria, in Partial Fulfilment of the Requirements for the Award of Doctor of Philosophy (Ph.D.) in Chemistry

By

ABAYOMI, AKINDELE AKEEM

A. A. ABAYOMI

PROF. B. I. ALO, FAS PROF. (MRS) K. O. OLAYINKA

(SUPERVISOR)

(SUPERVISOR)

DATE

ii

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION

This is to certify that the Thesis:

"STUDIES ON POTENTIALLY TOXIC METALS (PTMs) AND ANIONIC NUTRIENTS IN HIGHWAY RUNOFF AND ROADSIDE SOILS AND THEIR EFFECTS ON THE LAGOS LAGOON, NIGERIA."

Submitted to the School of Postgraduate Studies University of Lagos

For the award of the degree of DOCTOR OF PHILOSOPHY (Ph.D.) is a record of original research carried out

By:

ABAYOMI, AKINDELE AKEEM In the Department of Chemistry

SIGNATURE

AGMI A.A.

AUTHOR'S NAME

P.F. B. I. ALO 1ST SUPERVISOR'S NAME

Bahnjishte

SIGNATURE

2ND SUPERVISOR'S NAME

AR D. O. AYEJUYO

DR L-A ADAMS 2ND INTERNAL EXAMINER

Prof. P. C. Onianwa EXTERNAL EXAMINER

SPGS REPRESENTATIVE

SIGNATURE

SIGNATURE

SIGNATURE

2-200 SIGNATURE

STEA CSame

31/1/14 DATE

DATE

<u>31-1-14</u> DATE

14 01 DATE

31/01/14 DATE

DEDICATION

To the memories of

Afis Oriyomi (2008) Salamot Aduke (2009) Lateef Oluwatoyin (2011) ..and all the recently departed in the family

ACKNOWLEDGEMENTS

The hallmark of great men and women are the footprints they leave behind in the sand of time as guide for others to follow. For in tracking these imprints, the protégé grows in confidence and is assured of guidance. My deep, sincere and unreserved gratitude goes to my supervisors Professor Babajide Alo, Professor Bola Osuntogun and Professor Kehinde Olayinka, whose imprints have been my inspiration.

My profound appreciation goes to Professor Alo, who conceptualised the research idea for this study and stood by me, first as my supervisor and more crucially as my mentor to prosecute it. I found his wealth of knowledge both as an astute academic and a motivator indispensable. I always consider it a privilege to be his student and will ever be grateful for the training I have been exposed to under his tutelage.

I will forever be indebted to Professor Osuntogun who gave flesh to the words of my mother that we will always find a mother wherever our destiny may take us. She adopted me as a son and fully supported me from the day she agreed to supervise my Ph.D. programme. Her wise counsel, advice and personal financial support ensured that I never lacked quality guardianship and she never shied away from giving me an earful whenever the occasion demanded it. She is indeed a pillar to me.

My deep appreciation goes to Professor Olayinka whose contribution added more quality and direction to the study. She initiated the incorporation of Flow Injection Analysis into the study and enhanced my ability in grasping the technical aspect of the flow techniques. She also provided the platform for a seamless integration of other invaluable analytical chemistry ideas into the study. Her efforts eventually culminated into my trip to the University of Plymouth for adequate training on Flow Injection techniques. Her criticisms, moral support and personal interventions gave me the impetus to complete this work. Even when nature seems to darken the path and made the imprints too obscure to follow, words of encouragement, stern at times but soothing nevertheless, ensured I never strayed. I can never thank you all enough, my supervisors, for everything.

I deeply appreciate the contributions of the members of the Environmental and Analytical Research Group, University of Lagos for their inputs and cerebral exchanges of ideas; Drs. R.

Alani, T. Oluseyi and A. Oyeyiola, Miss T. Adetunde; and Messrs N. Oladosu and M. Hamed.

I am most thankful to the University of Lagos for the award of a "Doctoral Assistance Grant" and the Royal Society of Chemistry for the award of a "Developing World Scholarship-Analytical Chemistry Trust Fund" which facilitated my stay at the University of Plymouth (UoP), UK.

I am also thankful to all members (former and present) of the Department of Chemistry, University of Lagos for their contributions given as advice, support, personal interventions, and goodwill during my study; Profs. O. Familoni, M. Ogunlesi, and O. Abiola; Drs L. Adams, Akinbulu, O. Asekun, S. Ayejuyo, I. Babatunde, T. Fasina, T. Ogunbayo, A. Ogunsipe, W. Okiei, Osibote, L. Shuaib; Mrs Olafimihan and Mrs Egundeyi; Messrs. Adedokun, Begusa, Ojoniyi, Bello, Megida, Achem and others of the Chemistry family.

I will be ever grateful to Professor Paul Worsfold, my host at the University of Plymouth for his meticulous clarifications on FIA. Also to all members of the BEACh Research Group, University of Plymouth; Drs Malcolm Nimmo, Richard Sanford, Estella Reinoso, Marie Seguiret, John Kituyi, Collin May, Claire Willialms and other technical staff of SOGEES for their wonderful support and assistance during my stay at UoP.

I highly acknowledge the contributions of Hon. Muniru Muse (Former Chairman, Apapa Local Government), Chief Taiwo Adenekan (Former Chairman, Ifelodun Local Council Development Area, Lagos), Hon. Wahab Adigun (Former Chairman, Ifelodun Local Council Development Area, Lagos), Hon. Jamiu Alli-Balogun (Former Commissioner, Local Government Commission, Lagos), Mrs. Sidikat Oladosu, Mr. Tunji Adewunmi, Mr. Temple Nwanze, Mr. Roland Nwanze, Dr. Sunday Adebusoye and Dr. Akeem Kadiri for their support at various times during the journey.

Most importantly I will ever be grateful to my dearest mother, Alhaja (Chief) Aduke Salamot for striving and sparing all the little she had to ensure that a dream is fulfilled even though providence did not allow her to stay to witness it and also to my late brothers Afis Oriyomi (who was my sampling companion during the unpredictable wet season highway runoff samplings) and Lateef Oluwatoyin (Late) who always believed in me. Also, a huge thanks to my immediate brother Rasheed Abayomi for his companionship always, especially during the periods of vacuity. I also appreciate the roles played by my fathers, Messrs Said Abayomi and Gasali Adegoke (Late); my uncle Mr. Alao Sanni (Late); my father-in-law, Mr. Tajudeen Abayomi Oladosu (Late) and cousin Mr. Moruf Orilowo (Late) in ensuring I had stability during the course of the programme.

And to my dear wife, Adenike, and daughters; Adebola, Adekanyinsola and Adeshola, I will always be grateful for their support and understanding when I am around and seems not there and during my absence. They are indeed my worthy and cherished tribe.

And lastly to Him who has continued to indulge me with my needs, has inspired me when in doubt and has surrounded me with loving and caring people in moments of weakness. I will eternally be grateful.

TABLE OF CONTENT

Title page	ii
Certification	iii
Dedication	iv
Acknowledgement	v
Table of content	viii
List of Tables	xiv
List of Figures	xvi
List of Abbreviations	xxi
Abstract	xxii

1

1

CHAPTER ONE	
INTRODUCTION	

1.1	BACKGROUND	1
1.2	URBAN RUNOFF AND ROADSIDE SOILS	1
1.3	ROADSIDE SOIL, HIGHWAY RUNOFF AND POLLUTANT LOAD	2
1.4	NATURE OF POLLUTANTS FROM HIGHWAY RUNOFF AND ROADSIDE SOIL	4
	1.4.1 Roadside Sediment	4
	1.4.1 Organic Pollutants	4
	1.4.3 Potentially Toxic Metals (PTMs)	5
	1.4.4 Anionic Nutrients	6
1.5	FACTORS INFLUENCING LEVELS OF POLLUTANTS IN HIGHWAY RUNOFF AND	
	ROADSIDE SOILS	8
	1.5.1 Atmospheric Deposition	9
	1.5.2 Traffic Characteristics	9
	1.5.3 Degree of Imperviousness of Catchments and Surrounding Land Use	11
1.6	THE FIRST FLUSH PHENOMENON	12
1.7	MOBILIZATION OF POLLUTANTS FROM ROADSIDE SOILS AND HIGHWAY	
	RUNOFF TO RECIPIENT ENVIRONMENT	13

1.8	IMPACTS OF PTMS AND NUTRIENTS IN ROADSIDE SOILS AND HIGHWAY	
	RUNOFF ON RECIPIENT WATER	18
	1.8.1 PTMs' Toxicity and Impacts	18
	1.8.2 Eutrophication of Recipient Water	21
	1.8.3 Coastal Water Hypoxia	25
	1.8.4 Impacts of Highway Derived Sedimentation	27
1.9	DETERMINATION OF POTENTIALLY TOXIC METALS AND ANIONIC	
	NUTRIENTS IN ENVIRONMENTAL MEDIA	28
	1.9.1 PTM Determination	28
	1.9.2 Anionic Nutrients Determination	34
1.10	THE USE OF CONTINUOUS FLOW SYSTEMS FOR ENVIRONMENTAL	
	MONITORING OF POLLUTANTS	39
	1.10.1 Air Segmented Continuous Flow Analysis (ASCFA)	42
	1.10.2 Flow Injection Analysis (FIA)	43
1.11	THE LAGOS METROPOLIS	48
1.12	2 STATEMENT OF PROBLEM	50
1.13	AIMS AND OBJECTIVES OF THE STUDY	51
1.14	SCOPE/LIMITATION OF STUDY	52
1.15	SIGNIFICANCE OF STUDY	53
1.16	RESEARCH QUESTIONS AND PRESENT STUDY	54
1.17	OPERATIONAL DEFINITION OF TERMS	54
СН	APTER TWO	57

LITERATURE REVIEW

57
57
57

21	ENVIRONMENTAL IMPACTS OF URBAN RUNOFES AND ROADSIDE SOILS	57
2.1	Environmentine immension ordinitikonorris musikondside soites	51
2.2	POLLUTANTS IN HIGHWAY RUNOFFS AND ROADSIDE SOILS	57
2.3	MOBILISATION AND PARTITIONING OF POLLUTANTS	60
2.4	ENVIRONMENTAL EFFECTS AND TOXICITY OF HIGHWAY RUNOFF AND	
	ROADSIDE SOILS	61
2.5	DETERMINATION OF PTMS AND ANIONIC NUTRIENTS IN HIGHWAY RUNOFF	
	AND ROADSIDE SOILS	64

2.6	DETERMINATION OF PHOSPHORUS BY FLOW INJECTION ANALYSIS	63
	2.6.1 Optimisation of Flow Injection Analysis Manifold	63
	2.6.2 Continuous Flow Techniques for Phosphorus Determination	65
	2.6.3 Application of On-line Sample Treatment in Flow Injection Systems	68

CHAPTER THREE METHODOLOGY

72 72

3.1	STUDY AREA AND SAMPLING METHODS	71
	3.1.1 Atmospheric Deposition Sampling	73
	3.1.2 Highway Runoff Sampling	75
	3.1.3 Roadside Soil and Sediment Sampling	77
3.2	SAMPLE PREPARATION AND QUALITY CONTROL	77
3.3	PHYSICO-CHEMICAL ANALYSIS	77
	3.3.1 pH	77
	3.3.2 Conductivity	78
	3.3.3 Total Solids	78
	3.3.4 Total Dissolved Solids	78
	3.3.5 Dissolved Oxygen (DO)	79
	3.3.6 Chemical Oxygen Demand (COD)	79
	3.3.7 Acidity	80
	3.3.8 Alkalinity	80
	3.3.9 Hardness	81
	3.3.10 Chloride	81
	3.3.11 Total Organic Carbon and Total Organic Matter	81
3.4	POTENTIALLY TOXIC METAL (PTM) DETERMINATION	82
	3.4.1 Atmospheric Fallout and Highway Runoff Samples	82
	3.4.2 Roadside Soils and Lagoon Sediment Samples	82
3.5	ANIONIC NUTRIENT DETERMINATION USING CONTINUOUS FLOW	
	TECHNIQUES	84
	3.5.1 Total Phosphorus by Air Segmented Continuous Flow Analysis (ASCFA)	84
	3.5.2 Bioavailable Phosphorus by Air segmented Continuous Flow Analysis	86

	3.5.3 Bioavailable Nitrate by Air Segmented Continuous Flow Analysis	86
	3.5.4 Simultaneous Determination of Phosphate and Nitrate in Roadside Soil	
	Samples using Multi-Anionic Nutrients (H ³ A) Extractant	88
3.6	OPTIMISATION OF A CUSTOMISED FLOW INJECTION ANALYSIS (FIA)	
	SYSTEM	88
	3.6.1 Optimisation of Injection Volume	90
	3.6.2 Optimisation of the Reaction Temperature	90
	3.6.3 Optimisation of Ammonium Molybdate Concentration	91
	3.6.4 Optimisation of Length of Reaction Coil	91
	3.6.5 Optimisation of Ascorbic Acid Concentration	91
	3.6.6 Optimisation of the Flow Rate of Reagents	92
	3.6.7 Effects of Change of Manifold on the Sensitivity of the FIA System	92
3.7	DETERMINATION OF TOTAL PHOSPHORUS BY INDUCTIVELY COUPLED	
	PLASMA – OPTICAL EMISSION SPECTROMETER (ICP-OES)	96
3.8	DETERMINATION OF PHOSPHATE CONCENTRATION IN THE WATER COLUMN	
	OF THE LAGOS LAGOON USING FLOW INJECTION ANALYSIS	96
СН	IAPTER FOUR	98
RE	SULTS AND DISCUSSION	98
4.1	PHYSICO-CHEMICAL PARAMETERS OF HIGHWAY RUNOFF AND ROADSIDE	98
	SOIL SAMPLES	
4.2	POTENTIALLY TOXIC METALS (PTMS) IN HIGHWAY RUNOFF	103
4.3	POTENTIALLY TOXIC METALS IN ATMOSPHERIC FALLOUT SAMPLES	106
4.4	POTENTIALLY TOXIC METALS IN ROADSIDE SOILS AND LAGOON SEDIMENT	108
	4.4.1 Method Validation	108
	4.4.2 PTMs in Roadside Soils Samples	108
	4.4.3 PTMs in Lagos Lagoon Water Column and Sediment Samples	119
	4.4.4 Comparison of the PTM Concentrations in this Study with Results in Literature	122
4.5	ANIONIC NUTRIENTS	125
	4.5.1 Reference Materials and Calibration of Method	125
	4.5.1 Reference Materials and Calibration of Method4.5.2 Total Phosphorus in Roadside Soils	125 127

4.5.4 Bio	available Nitrate in the Roadside Soils	132
4.5.5 Niti	rogen:Phosphorus Ratio in the Roadside Soils	134
4.5.6 Ani	onic Nutrients in the Lagos Lagoon Sediment Samples	135
4.5.7 Pho	sphate and Nitrate Concentration in Roadside Soils Samples using Multi-Anionic	
Nut	rients Extractant (H ³ A)	138
4.6 OPTIMIS	SATION OF FLOW INJECTION ANALYSIS SYSTEM AND	1.40
DETERN	/INATION OF TOTAL PHOSPHORUS	140
4.6.1 Opt	imisation of Injection Volume	140
4.6.2 Opt	imisation of Reaction Temperature	142
4.6.3 Opt	imisation of Molybdate Concentration	143
4.6.4 Opt	imisation of Length of Reaction Coil	145
4.6.5 Opt	imisation of Ascorbic Acid Concentration	146
4.6.6 Opt	imisation of Flow Rate	147
4.6.7 Cal	ibration of the Optimised FIA System	149
4.6.8 Effe	ect of Manifold Change on the Sensitivity of the FIA System	149
4.7 TOTAL	PHOSPHORUS IN ROADSIDE SOILS AND LAGOON SEDIMENT USING	
THE OP	TIMISED FIA SYSTEM AND COMPARISON WITH RESULTS FROM ICP-OES	5
AND AS	SCFA TECHNIQUES	153
4.8 PHOSPH	HATE CONCENTRATION IN THE WATER COLUMN OF THE LAGOS	
LAGOO	N USING FLOW INJECTION ANALYSIS	156
4.9 RELATIO	ONSHIP BETWEEN LEAD AND PHOSPHORUS IN THE ROADSIDE SOILS	157
CHAPTER I	FIVE	160
CONCLUSI	ON	160
5.1 SUMMA	RY OF FINDINGS	160
5.2 CONTRII	BUTION TO KNOWLEDGE	162
REFERENCE	ES	163
APPENDIX		197
Appendix 1:	Effects of Injection Volume on Customised FIA System	197
Appendix 2:	Effects of Temperature on Customised FIA System	199

Appendix 3:	Effects of Molybdate Concentration on Customised FIA System	201
Appendix 4:	Effects of Reaction Coil Length on Customised FIA System	203
Appendix 5:	Effects of Ascorbic Acid on Customised FIA System	205
Appendix 6:	Effects of Flow Rate on Customised FIA System	206
Appendix 7:	List of Conference/Seminars Attended	209
Appendix 8:	Publication I	

- Appendix 9: Publication II
- Appendix 10: Publication III

LIST OF TABLES

Table 1.1	The Nature and Sources of Pollutants in Roadside Soils and Runoff	5
Table 1.2	Some PTMs derived from Vehicular and other Highway Sources	7
Table 3.1	Sampling Locations of the Runoff and Roadside Soils Study	72
Table 3.2	Characteristics of the Highway Locations used in the Study	73
Table 3.3	Geo-referenced Position and Features of Sampling Sites used in this Study	74
Table 4.1	Results of Physico-chemical Analysis of Runoff and Roadside Soils Samples	99
	from Location A	
Table 4.2	Results of Physico-chemical Analysis of Runoff and Roadside Soils Samples	100
	from Location B.	
Table 4.3	Results of Physico-chemical Analysis of Runoff and Roadside Soils Samples	101
	from Location C.	
Table 4.4	Concentration of PTMs in Highway Runoff from the Sampled Location	104
Table 4.5	Mean Concentration of PTMs in Atmospheric Fallout around Sampled	106
	Location	
Table 4.6	Validation Analysis of some of the PTMs Determined in the Reference	108
	Materials	
Table 4.7	Concentration of PTMs in Roadside Soil Samples during the Wet Season	110
Table 4.8	Concentration of PTMs in Roadside Soil Samples during the Dry Season	111
Table 4.9	Pearson Correlation Table for the PTMs Determined in Roadside Soil Samples	118
Table 4.10	Multiple Comparison for the PTMs Determined in Roadside Soils and Lagos	119
	Lagoon Sediment Samples	
Table 4.11	Concentration of PTMs in the Sediment and Water Column of the Lagos	120
	Lagoon	
Table 4.12	Comparison of PTM Concentrations in this Study, Control Samples and	124
	Water Standard/Soil Background Levels	
Table 4.13	Comparison of PTM Results in this Study with Similar Studies on Runoff	125
	and Roadside	
Table 4.14	Validation Analysis of Total Phosphorus in Reference Material	126
Table 4.15	Mean Concentration of Total Phosphorus using Air Segmented Continuous	129
	Flow Analysis	

Table 4.16	Mean Concentration of Bioavailable Phosphorus using Air Segmented	134
	Continuous Flow Analysis	
Table 4.17	Percentage of Bioavailable Phosphorus in Roadside Soils from the Sampled	130
	Highways	
Table 1.18	Concentration of NO_2^{-}/NO_3^{-} in the Roadside Soils Samples	133
Table 4.19	Bioavailable Nitrogen: Phosphorus Ratio (as Nitrate to Phosphate) in the	135
	Roadside Soils	
Table 4.20	Mean Concentrations of Anionic Nutrients in the Lagos Lagoon Water and	142
	Sediment Samples	
Table 4.21	Pearson's Correlation Matrix for Total Phosphorus Concentrations obtained	155
	from the Different Techniques used in this Study.	
Table 4.22	Concentration of Phosphorus in Different Strata of the Lagos Lagoon using	157
	Flow Injection Analysis (FIA).	

LIST OF FIGURES

Figure 1.1	Pathway of Urban Highway Pollutants through Highway Runoff	3
Figure 1.2	A Schematic overview of Tropospheric Chemistry	10
Figure 1.3	A First Flush Concentration Gradient Curve	12
Figure 1.4	The Phases of Runoff/Recipient Water Systems and Conditions which Favour	14
	Partitioning in each Phase	
Figure 1.5	The Metal Binding Fraction: (A) Cutin-Lignin-Tannin Complex and (B)	16
	Condensed Flavonoid Tannin Organic Matter	
Figure 1.6	A Diagram showing the Input of Nutrients from various Watersheds into the	23
	Recipient Water with its attendant Impacts	
Figure 1.7	A Typical Eutrophied Creek in Metropolitan Lagos, Nigeria	24
Figure 1.8	Mass of Floating Water Hyacinth Plants on the Lagos Lagoon overlooking the	24
	Third Mainland Bridge	
Figure 1.9	Schematic Illustration of Atomic Spectroscopic Techniques	29
Figure 1.10	Schematic Diagram of a Double Beam Atomic Absorption Spectrophotometer	31
Figure 1.11	Schematic Illustration of the Cross Section of ICP Plasma Source	32
Figure 1.12	Schematic Diagram of ICP-AES and ICP-MS	34
Figure 1.13	A Flowchart of Operational Phosphorus Species and their Determination in	35
	Environmental Samples	
Figure 1.14	Schematic Representation of the Evolution of Continuous Flow Analysis	40
Figure 1.15	Schematic Illustration of Continuous Flow Manifolds for Determination of	41
	Chemical Parameters	
Figure 1.16	Schematic Representation of the Air Segmented Continuous Flow Analysis	42
	(ASCFA)	
Figure 1.17	A Flow Injection Analysis (FIA) System	44
Figure 1.18	Formation of Sample Zone on Injection in FIA	45
Figure 1.19	An Aerial View of the Lagos Metropolis	49
Figure 3.1	Map of Lagos Showing the Highway Runoff, Roadside Soils and Lagos Lagoon	73
	Sediment Sampling Locations in 2005-2009	
Figure 3.2	Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES)	83
	Instrument	
Figure 3.3	Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) Instrument	84

Figure 3.4	Air Segmented Continuous Flow Analysis, ASCFA (Skalar SAN ⁺) Manifold for	85
	Phosphate Determination	
Figure 3.5	Signal Output of Concentration of Phosphate in Roadside Soil Samples by Air	86
	Segmented Continuous Flow Analysis, ASCFA (Skalar SAN ⁺)	
Figure 3.6	ASCFA (Skalar SAN ⁺) Manifold for Nitrite/Nitrate Analysis	87
Figure 3.7	Manifold A; Optimised Flow Injection Analysis Manifold for Phosphorus	89
	Determination	
Figure 3.8	Manifold B with a Premixed Sample and Molybdate Stream	93
Figure 3.9	Manifold C with the Sample Directly Injected into the Molybdate Stream and	94
	Delay Coil to Enhance Colour DevelopIment	
Figure 3.10	Manifold D with an Online Sample Dilution (as Modified from Manifold C)	95
Figure 3.11	Flow Injection Manifold used for the Determination of Phosphate in the Water	97
	Column of the Lagos Lagoon.	
Figure 4.1	Mean Concentration of PTMs in the Runoff Samples	105
Figure 4.2	Mean Concentration of PTMs from Atmospheric Fallout around the Sampled	107
	Locations	
Figure 4.3	Concentration of Cadmium (Cd) in Roadside Soils during the Wet and Dry	114
	Seasons	
Figure 4.4	Concentration of Chromium (Cr) in Roadside Soils during the Wet and Dry	115
	Seasons	
Figure 4.5	Concentration of Copper (Cu) in Roadside Soils during the Wet and Dry	115
	Seasons	
Figure 4.6	Concentration of Nickel (Ni) in Roadside Soils during the Wet and Dry Seasons	116
Figure 4.7	Concentration of Zinc (Zn) in Roadside Soils during the Wet and Dry Seasons	116
Figure 4.8	Concentration of Vanadium (V) in Roadside Soils during the Wet and Dry	117
	Seasons	
Figure 4.9	Concentration of Lead (Pb) in Roadside Soils during the Wet and Dry Seasons	117
Figure 4.10	Concentration of Platinum (Pt) in Roadside Soils during the Wet and Dry	118
	Seasons	
Figure 4.11	Concentration of some PTMs in the Water Column of the Lagos Lagoon	122
Figure 4.12	Concentration of Cu, Pb, Zn and Pt ($\mu g k g^{-1}$) in the Sediments of Lagos Lagoon	127
Figure 4.13	Concentration of Cd, Cr, Ni and V in the Sediments of the Lagos Lagoon	123

Figure 4.14	Calibration Graph of Standard Phosphate Solutions used in the ASCFA	
	Determination of Phosphorus	131
Figure 4.15	Correlation Graph of Bioavailable Phosphorus to Total Phosphorus in the	132
	Roadside Soil Samples during the Wet Season	
Figure 4.16	Calibration Graph of the Standard Solutions used in the ASCFA	137
	Determination of Nitrate (NO ₃ ⁻)	
Figure 4.17	Concentration of Bioavailable Phosphorus in Selected Roadside Soils using the	139
	H ³ A Extractant.	
Figure 4.18	Concentration of Nitrate in Selected Roadside Soils using the H ³ A Extractant.	140
Figure 4.19	Calibration Graphs showing the Effect of Injection Volume on the	141
	Absorbance of a Series of Standard Phosphate Solutions	
Figure 4.20	Effects of Temperature on the Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ -P Standard	142
	Solution	
Figure 4.21	Effects of Molybdate Concentrations on the Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ -P	144
	Standard Solution	
Figure 4.22	Effects of Reaction Coil Lengths on the Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ -P	145
	Standard Solution	
Figure 4.23	Effects of Ascorbic Acid Concentration on the Absorbance of 250 $\mu g \ L^{\text{-1}} \ PO_4^{\text{-3}}\text{-}P$	146
	Standard Solution	
Figure 4.24	Effects of Flow Rates on the Absorbance of 250 μ g L ⁻¹ PO ₄ - ³ -P Standard Solution	148
Figure 4.25	Calibration Graph of Standard PO_4^{3-} - P solutions (n=5) at Optimised Conditions	149
Figure 4.26	Calibration Graph of Standard Phosphorus Solutions using Manifold B	150
	(Uncorrected and Corrected) at 0.13mL min ⁻¹	
Figure 4.27	Calibration Curve of Standard Phosphorus Solutions using Manifold C	151
	(Uncorrected and Corrected) at 0.13 mL min ⁻¹	
Figure 4.28	Calibration Graph of Standard Phosphorus Solutions using Manifold D	151
	(Uncorrected and Corrected) at 0.13 mL min ⁻¹ .	
Figure 4.39	Comparative Concentration of total P in Roadside Soils (Wet Season) using	
	different Techniques.	153
Figure 4.30	Comparative Concentration of Total P in Roadside Soils (Dry season) using	154
	different Techniques	
Figure 4.32	Comparative Concentration of Total P in the Lagos Lagoon Sediments using	154
	different Techniques	

Figure 4.33	Concentration of Pb and P in Roadside Soils during the Wet Season	158
Figure 4.34	Concentration of Pb and P in Roadside Soils during the Dry Season	159
Figure 1a	Absorbance Profile of PO_4^{-3} -P Standard Solution of Customised FIA at Injection Volume of 25 μ L	197
Figure 1b	Absorbance Profile of PO_4^{-3} -P Standard Solution of Customised FIA at Injection Volume of 62.5 μ L.	197
Figure 1c	Absorbance Profile of PO_4^{-3} -P Standard Solution of Customised FIA at Injection Volume of 110 μ L	198
Figure 1d	Absorbance Profile of PO_4^{-3} -P Standard Solution of Customised FIA at Injection Volume of 250 μ L	198
Figure 2a	Effect of Temperature on the Absorbance of Standard Phosphate Solution (250 $\mu g L^{-1}$) at 30°C.	199
Figure 2b	Effect of Temperature on the Absorbance of Standard Phosphate Solution (250 $\mu g L^{-1}$) at 40°C.	199
Figure 2c	Effect of Temperature on the Absorbance of Standard Phosphate Solution (250 $\mu g L^{-1}$) at 50°C.	200
Figure 3a	Absorbance of $250 \mu g L^{-1} PO_4^{-3}$ - P solution at 0.010 M Molybdate Concentration	201
Figure 3b	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P solution at 0.012 M Molybdate Concentration	201
Figure 3c	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P solution at 0.014 M Molybdate Concentration	202
Figure 3d	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P solution at 0.015 M Molybdate Concentration	202
Figure 4a	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Solution at Reaction Coil Length of 30 cm	203
Figure 4b	Absorbance of 250µg L ⁻¹ PO ₄ ⁻³ - P Solution at Reaction Coil Length of 90 cm	203
Figure 4c	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Solution at Reaction Coil Length of 120 cm	204
Figure 5a	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Standard Solution at 0.26 M Ascorbic Acid	205
	Concentration	
Figure 5b	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Standard Solution at 0.28 M Ascorbic Acid	205
Figure 5c	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Standard Solution at 0.31 M Ascorbic Acid	206

	Concentration	
Figure 5d	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Standard Solution at 0.34 M Ascorbic Acid	206
	Concentration	
Figure 6a	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Standard Solution at 0.12 mL min. ⁻¹	207
	Manifold Flow Rate	
Figure 6b	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Standard Solution at 0.18 mL min. ⁻¹	207
	Manifold Flow Rate	
Figure 6c	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Standard Solution at 0.31 mL min. ⁻¹	208
	Manifold Flow Rate	
Figure 6d	Absorbance of 250 μ g L ⁻¹ PO ₄ ⁻³ - P Standard Solution at 0.34 mL min. ⁻¹	208
	Manifold Flow Rate	

LIST OF ABBREVIATIONS

AAS	-Atomic Absorption Spectroscopy
ADT	-Average Daily Traffic
AIA	-All Injection Analysis
ASCFA	-Air Segmented Continuous Flow Analysis (Analyzer)
ASV	-Anodic Stripping Voltammetry
BDL	-Below Detection Limit
BI	-Bead Injection
BOD	-Biochemical Oxygen Demand
COD	-Chemical Oxygen Demand
DO	-Dissolved Oxygen
DOM	-Dissolved Organic Matter
FES	-Flame Emission Spectroscopy
FIA	-Flow Injection Analysis
GC-MS	-Gas Chromatography-Mass Spectrometer
HPLC	-High Performance Liquid Chromatography
ICP-AES	- Inductively Coupled Plasma-Atomic Emission Spectrophotometer
ICP-MS	-Inductively Coupled Plasma-Mass Spectrometer
ICP-OES	-Inductively Coupled Plasma-Optical Emission Spectrophotometer
MCFIA	-Multi Cummutated Flow Injection Analysis
MSFIA	-Multi Syringe Flow Injection Analysis
N:P	-Nitrogen to Phosphorus ratio
PTM	-Potentially Toxic Metal
RF	-Radio Frequency
SIA	-Sequential Injection Analysis
SIC	-Sequential Injection Analysis
SVOC	-Semi Volatile Organic Compounds
SWV	-Square Wave Voltammetry
TDS	-Total Dissolved Solids
TP	-Total Phosphorus
TS	-Total Solids
TSS	-Total Suspended Solids
VDS	-Vehicle During Storm
VOCs	-Volatile Organic Compounds

ABSTRACT

Roadside soils serve as a significant mechanism for pollutants entrapment on the highways. These pollutants are eventually mobilized to catchments, particularly during runoff events in the rainy season. Highway runoff has been recognised as a major source of potentially toxic metals (PTMs) and anionic nutrients' transport to receiving waters with attendant environmental impacts. This study examined the influence of runoff from highways and roadside soils in the PTMs and anionic nutrient pollution of the Lagos Lagoon. Dry atmospheric fallout, highway runoff and roadside soils were sampled from three major highways in the Lagos metropolis during rainy and dry seasons between 2005 and 2009. Sediment samples from some highway watersheds along the Lagoon were also obtained within this period.

The physico-chemical parameters of the runoff and roadside soil samples were determined thus; pH, temperature and conductivity by electrometric methods; the total solids and total dissolved solids by gravimetric methods; the dissolved oxygen (DO) by the Winkler's azide modification method; chemical oxygen demand (COD) by the open reflux method; chloride by the mercuric nitrate method; the acidity, alkalinity and hardness by titrimetric methods; phosphate by the molybdenum blue colorimetric method. The total organic carbon in the roadside soils was determined by the Walkley-Black method. The PTM levels in the atmospheric fallout and highway runoff samples were determined by flame Atomic Absorption Spectrophotometry (AAS) after each sample was digested with concentrated nitric acid. The roadside soil and sediment samples were digested with aqua-regia at 50°C for 60 min. and then at 100°C for 5 hours after which their PTMs and total phosphorus concentrations were determined. Concentrations of Cu, Cr, Ni, Pb and Zn in the digests were determined by Inductively Coupled Plasma Optical Emission Spectrophotometer, ICP-OES and concentrations of Cd, Pd, Pt and V determined by Inductively Coupled Plasma Mass Spectrophotometer, ICP-MS. An Air Segmented Continuous Flow Analyser, ASCFA was used for the colorimetric anionic nutrients determination of total and bioavailable (Olsen-P) phosphorus and bioavailable nitrate in the roadside soil and Lagoon sediment samples. A customised and fully optimized four channel flow injection analysis (FIA) system and ICP-OES were also used to determine the total phosphorus in the samples.

The results of the physico-chemical parameters showed that the pH levels of the runoff samples ranged from 6.20 - 7.25 in the runoff samples and 6.42 - 7.42 in the roadside soils. The mean concentrations of the total dissolved solids were 126 ± 34 , 145 ± 57 and 375 ± 335

mg L⁻¹ for the respective study locations. Mean concentration ranges of the acidity and alkalinity of the runoff samples were $8.2 - 18.5 \text{ mg L}^{-1}$ and $24.5 - 109.5 \text{ mg L}^{-1}$. On the average, the selected studied highways; A, B and C contributed 0.11 ± 0.04 , 0.34 ± 0.26 and 0.67 ± 0.75 mg L⁻¹ dissolved phosphorus respectively to the Lagoon system through the sampled highway runoff. Mean concentration of dissolved oxygen in the runoff samples were 3.20 ± 1.37 , 3.60 ± 1.32 and 4.50 ± 1.33 mg L⁻¹ at the respective study locations. Chemical oxygen demand (COD) levels in the runoff samples at these locations were 248 ± 122 , $135 \pm$ 71 and $198 \pm 106 \text{ mg L}^{-1}$. The concentrations of PTMs in the atmospheric deposits, highway runoff, roadside soil and sediment samples were in the order of Zn>Pb> Cu. In the roadside soils, concentrations of these PTMs were higher in the wet season than in the dry season at most of the sampling locations except for Zn which had higher concentration values in the dry season than in the wet season at more of the sampling sites. Mean dry season concentration values were $202 \pm 110 \text{ mg kg}^{-1}$ Zn; $125 \pm 96 \text{ mg kg}^{-1}$ Pb and $39 \pm 19 \text{ mg kg}^{-1}$ Cu. The mean wet season concentration values were $151 \pm 63 \text{ mg kg}^{-1}$ Zn; 130 ± 93 Pb and 65 ± 68 Cu mg kg⁻¹. Mean concentration range observed in the highway runoff samples were $0.057 - 2.029 \text{ mg L}^{-1} \text{ Zn}$; $0.096 - 1.153 \text{ mg kg}^{-1} \text{ Pb and } 0.002 - 0.442 \text{ mg L}^{-1} \text{ Cu}$. These concentrations were mostly higher than the 0.030 mg L^{-1} Zn, 0.001 mg L^{-1} Pb and 0.002-0.004 mg L⁻¹ threshold prescribed for water with aquatic life by the Federal Ministry of Environment (FMenv), in Nigeria. The concentrations of the PTMs including Pt (a catalytic engine fingerprint) were comparatively higher at sampled Lagoon watersheds which directly receive highway runoff, roadside soils' leachate and road derived sediment. A concentration range of $1.18 - 4.50 \ \mu g \ kg^{-1}$ was obtained at these watersheds. These concentrations are higher than the 0.41 mg kg⁻¹ obtained at the sampling site which is was not directly receiving these highway inputs. This strongly indicates possible highway influence in the Lagos lagoon PTMs concentration. The mean total phosphorus concentrations in roadside soils was 285 \pm 279 mg kg⁻¹ in the wet season and 424 \pm 629 mg kg⁻¹ in the dry season, indicating that rainwater leaching of roadside soils accumulated on the highways during the dry season is probably a major mechanism for phosphorus transport from the roadside soils into the Lagos lagoon. The bioavailable fractions were $3.47 - 5.17 \text{ mg kg}^{-1}$ in the wet season and 8.7 - 13.0mg kg⁻¹ in the dry season. The bioavailable nitrates in the samples had a mean concentration of 3.19 \pm 3.07 and 4.31 \pm 5.62 mg kg⁻¹ for the wet and dry season respectively. The total P concentrations from the customised FIA system had significant correlation of up to 0.996 with the ASCFA and ICP-OES techniques used in the study indicating the suitability of the developed FIA method for subsequent phosphorus studies in highway runoff and roadside soils.

The study showed that highway runoff and roadside soils are major contributors of PTMs and anionic nutrients to the Lagos lagoon and therefore impact negatively on the water quality of the Lagoon.