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Abstract

This research work entails the study of the existence of common fixed points of some Ciric classes of contractive mappings
in cone b-metric spaces. The main result obtained unifies, improves and generalizes several results in literature including those of
Abbas et al. (2010) and Huang and Xu (2012). Furthermore, as a way of applications, the result is used to discuss common coupled,
tripled and multipled fixed points of contractive maps defined on cone b-metric spaces, via product cone b-metric spaces.
c⃝ 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of Nigerian Mathematical Society. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Banach contraction principle proved by Banach [1] in a complete metric space was the starting point of
exhaustive research in the fixed point theory. Many contractive conditions under which a map or set of maps have
fixed points or common fixed points have been studied in metric spaces (see, for example, [2,3]). Generalized
metric spaces have also been considered with the introduction of b-metric spaces [4], cone metric spaces [5] and
recently, cone b-metric spaces [6]. Recall that a b-metric defined on a nonempty set X is a symmetric function
d : X × X → R+ that satisfies the identity of indiscernibles (or coincidence axiom) and a distorted triangle inequality
d(x, z) ≤ K [d(x, y) + d(y, z)] ∀x, y, z ∈ X , where K is a fixed constant greater or equal to 1.

The results in Abbas et al. [7] and Olaleru and Olaoluwa [8] are a comprehensive generalization of many previous
works on contractive mappings in cone metric spaces [9,10]. They established conditions under which four maps tied
by a contractive condition have a common fixed point.

Huang and Xu [11] presented some new examples in cone b-metric spaces and proved some fixed point theorems
of contractive mappings without the assumption of normality in cone b-metric spaces. In this paper, we generalize the
results of Abbas et al. [7] to the context of cone b-metric spaces. Furthermore, the use of functions instead of constants
in the contractive conditions studied improves and unifies most results, along this research interest, in literature.

The following definitions and results will be needed in the sequel.
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Definition 1 (See [5]). Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, non-empty and P ≠ {0};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax + by ∈ P;
(c) P ∩ (−P) = {0}.

Given a cone P , define a partial ordering ≤ with respect to P by x ≤ y if and only if y − x ∈ P . We shall write x ≪ y
for y − x ∈ int P , where int P stands for interior of P . Also we will use x < y to indicate that x ≤ y and x ≠ y.

The cone P in a normed space E is called normal whenever there is a real number k > 0, such that for all
x, y ∈ E, 0 ≤ x ≤ y implies ∥x∥ ≤ k∥y∥. The least positive number satisfying this norm inequality is called the
normal constant of P .

In the following, we always suppose that E is a Banach space, P is a cone in E with int(P) ≠ ∅ and ≤ is a partial
ordering with respect to P .

Definition 2 (See [5]). Let X be a non-empty set and let E be a real Banach space equipped with the partial ordering
≤ with respect to the cone P ⊂ E . Suppose that the mapping d : X × X −→ E satisfies:

(c1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and ony if x = y;
(c2) d(x, y) = d(y, x) for all x, y ∈ X ;
(c3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 3 (See [6]). Let X be a nonempty set and s ≥ 1 be a given real number. A mapping d : X × X → E is
said to be cone b-metric if and only if, for all x, y, z ∈ X , the following conditions are satisfied:

(b1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and ony if x = y;
(b2) d(x, y) = d(y, x) for all x, y ∈ X ;
(b3) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X .

The pair (X, d) is called a cone b-metric space.

Obviously, cone b-metric spaces generalize b-metric spaces and cone metric spaces. Here are some examples:

Example 4. Let X = {1, 2, . . . , n}; E = R2; P = {(x, y) ∈ E : x ≥ 0, y ≤ 0}. Define d : X × X → E by

d(x, y) =




1
|x − y|

, −|x − y|


if x ≠ y

0 if x = y.

If n ∉ {2, 3}, then (X, d) is a cone b-metric space with the coefficient s =
(n−1)(n−2)

2n−3 > 1 and not a cone metric space
since the triangle inequality fails for the points 1, 2, n. If n ∈ {2, 3}, then (X, d) is a cone metric space.

Example 5 (See [6]). Let X = l p with 0 < p < 1, where l p
= {{xn} ⊂ R :


∞

n=1 |xn|
p < ∞}. Let

d : X × X → R+ be defined by d(x, y) =


∞

n=1 |xn − yn|
p
 1

p . Then (X, d) is a b-metric space. Put E = l1,

P = {{xn} ∈ E : xn ≥ 0, ∀n ≥ 1}. Letting d̄ : X × X → E be defined by d̄(x, y) =
 d(x,y)

2n


n≥1, (X, d̄) is a cone

b-metric space with the coefficient s = 2
1
p > 1 but it is not a cone metric space.

Definition 6 (See [6]). Let (X, d) be a cone b-metric space, {xn} a sequence in X and x ∈ X . We say that {xn} is

• a Cauchy sequence if for every c ∈ E with 0 ≪ c, there is some k ∈ N such that, for all n, m ≥ k, d(xn, xm) ≪ c;
• a convergent sequence if for every c ∈ E with 0 ≪ c, there is some k ∈ N such that, for all n ≥ k, d(xn, x) ≪ c.

Such x is called limit of the sequence {xn}.

Note that every convergent sequence in a cone b-metric space X is a Cauchy sequence. A cone b-metric space X
is said to be complete if every Cauchy sequence in X is convergent in X . The following lemma will be needed in the
sequel:
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Lemma 7. Let (X, d) be a cone b-metric space X with the coefficient s ≥ 1. Suppose that the sequence {yn} ⊂ X be
such that there is λ ∈ [0, 1

s ) such that d(yn, yn+1) ≤ λd(yn−1, yn) for each n ≥ 1. Then {yn} is Cauchy.

Proof. For n ∈ N, we have d(yn, yn+1) ≤ λd(yn−1, yn) ≤ λ2d(yn−2, yn−1) ≤ · · · ≤ λnd(y0, y1). For any n, p ∈ N,
we have:

d(yn, yn+p) ≤ s[d(yn, yn+1) + d(yn+1, yn+p)]

= sd(yn, yn+1) + sd(yn+1, yn+p)

≤ sd(yn, yn+1) + s2
[d(yn+1, yn+2) + d(yn+2, yn+p)]

= sd(yn, yn+1) + s2d(yn+1, yn+2) + s2d(yn+2, yn+p)

≤

...

≤ sd(yn, yn+1) + s2d(yn+1, yn+2) + · · · + s p−1d(yn+p−2, yn+p−1) + s p−1d(yn+p−1, yn+p)

≤ [sλn
+ s2λn+1

+ s3λn+2
+ · · · + s p−1λn+p−2

+ s p−1λn+p−1
]d(y0, y1)

≤ sλn
p−1
k=0

(sλ)kd(y0, y1) = sλn 1
1 − (sλ)

d(y0, y1).

Given 0 ≪ c, choose τ > 0 such that c + {y ∈ P : y < τ } ⊂ P . Since sλn 1
1−sλ → 0 as n → ∞, there is n0 ∈ N

such that sλn 1
1−sλd(y0, y1) ∈ {y ∈ P : y < τ } for all n > n0. It follows that sλn 1

1−sλd(y0, y1) ≪ c for all n > n0.
Thus for all n > n0 and p ∈ N, d(yn, yn+p) ≪ c and {yn} is Cauchy. �

Definition 8 (See [12,13]). Let X be a set and let f, g be two self-mappings of X .

(i) A point x ∈ X is called a coincidence point of f and g iff f x = gx . We shall call w = f x = gx a point of
coincidence of f and g.

(ii) f and g are weakly compatible (w-compatible) if they commute at all their coincidence points.
(iii) f and g are occasionally weakly compatible (owc) iff there is a point x ∈ X which is a coincidence point of f

and g at which f and g commute.

It should be noted that the concept of occasionally weak compatibility is a proper generalization of nontrivial weak
compatibility for maps which do have a coincidence point. However, if two occasionally weakly compatible maps f
and g have just one point of coincidence (even with many coincidence points), then they are weakly compatible: If
x1, x2, . . . , xn are n coincidence points of f and g and w is the unique point of coincidence, then w = f xi = gxi for
all i ; thus “ f and g owc” implies that f gxi0 = g f xi0 for one i0 ∈ {1, 2, . . . , n}, that is f w = gw and f gxi = g f xi
for all i ∈ {1, 2, . . . , n}.

2. Fixed points of contractive mappings in cone b-metric spaces

We begin this section by proving the existence of common fixed points for four contractive self maps of Ciric type
(see [14]) in cone b-metric spaces using a methodology inspired by [14,7,6]. The following Theorem 9 generalizes all
the results in [7] and the references therein to cone b-metric spaces. Furthermore, when s = 1, it unifies their results in
the sense that the choice of functions, as in [14], instead of constants, as in [7], permits us to obtain their two theorems
as corollaries.

Theorem 9. Let f, g, S and T be self-mappings of a cone b-metric space X with the coefficient s ≥ 1, satisfying
f (X) ⊂ T (X), g(X) ⊂ S(X) and

d( f x, gy) ≤ a1(x, y)d(Sx, T y) + a2(x, y)d( f x, Sx) + a3(x, y)d(gy, T y)

+ a4(x, y)[d( f x, T y) + d(gy, Sx)] (1)
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for all x, y ∈ X, where a1, a2, a3, a4 : X × X → [0, 1
s ) satisfy

sup
x,y∈X

{a1(x, y) + a2(x, y) + a3(x, y) + 2sa4(x, y)} ≤ λ <
1
s
. (2)

If one of f (X), g(X), S(X) or T (X) is a complete subspace of X, then { f, S} and {g, T } have a unique point
of coincidence in X. Moreover if { f, S} and {g, T } are occasionally weakly compatible, then f, g, S and T have a
unique common fixed point.

Proof. Given that f (X) ⊂ T (X) and g(X) ⊂ S(X), and given x0 ∈ X , one can define sequences {xn} and {yn} such
that y2n−1 := f x2n−2 = T x2n−1 and y2n := gx2n−1 = Sx2n for all n ∈ N.

d(y2n, y2n+1) = d( f x2n, gx2n−1)

≤ a1(αn)d(Sx2n, T x2n−1) + a2(αn)d( f x2n, Sx2n)

+ a3(αn)d(gx2n−1, T x2n−1) + a4(αn)[d( f x2n, T x2n−1) + d(gx2n−1, Sx2n)]

≤ a1(αn)d(y2n−1, y2n) + a2(αn)d(y2n+1, y2n) + a3(αn)d(y2n, y2n−1) + a4(αn)d(y2n+1, y2n−1)

≤ a1(αn)d(y2n−1, y2n) + a2(αn)d(y2n+1, y2n)

+ a3(αn)d(y2n, y2n−1) + a4(αn)s[d(y2n+1, y2n−1) + d(y2n, y2n−1)]

≤ [a1(αn) + a3(x2n, x2n−1) + sa4(αn)]d(y2n−1, y2n) + [a1(αn) + sa4(αn)]d(y2n, y2n+1),

where αn = (x2n, x2n−1).
Hence d(y2n, y2n+1) ≤ δ(x2n, x2n−1)d(y2n−1, y2n) where δ(x, y) =

a1(x,y)+a3(x,y)+s·a4(x,y)
1−a2(x,y)−s·a4(x,y)

.

Since λ < 1
s ≤ 1, from a1(x, y)+λa2(x, y)+ a3(x, y)+λsa4(x, y)+ sa4(x, y) ≤ λ, we have δ(x, y) ≤ λ; hence

for all n ∈ N

d(y2n, y2n+1) ≤ λd(y2n−1, y2n). (3)

d(y2n+1, y2n+2) = d( f x2n, gx2n+1)

≤ a1(βn)d(Sx2n, T x2n+1) + a2(βn)d( f x2n, Sx2n)

+ a3(βn)d(gx2n+1, T x2n+1) + a4(βn)[d( f x2n, T x2n+1) + d(gx2n+1, Sx2n)]

≤ a1(βn)d(y2n+1, y2n+2) + a2(βn)d(y2n+1, y2n+2)

+ a3(βn)d(y2n+1, y2n+2) + a4(βn)d(y2n, y2n+2)

≤ [a1(βn) + a2(βn) + a3(βn)]d(y2n+1, y2n+2) + a4(βn)s[d(y2n, y2n+1) + d(y2n+1, y2n+2)]

≤ [a1(βn) + a2(βn) + a3(βn) + sa4(βn)]d(y2n+1, y2n+2) + sa4(βn)d(y2n, y2n+1),

where βn = (x2n, x2n+1).
Hence d(y2n+1, y2n+2) ≤ δ′(x2n, x2n+1)d(y2n, y2n+1) where δ′(x, y) =

sa4(x,y)
1−a1(x,y)−a2(x,y)−a3(x,y)−sa4(x,y)

.

Since λ < 1
s ≤ 1, from λ[a1(x, y) + a2(x, y) + a3(x, y) + s · a4(x, y)] + sa4(x, y) ≤ λ, we have δ′(x, y) ≤ λ;

hence for all n ∈ N

d(y2n+1, y2n+2) ≤ λd(y2n, y2n+1). (4)

From (3) and (4) we have that d(yn, yn+1) ≤ λd(yn−1, yn) for all n ≥ 2.
From Lemma 7, {yn} is a Caucy sequence.
Suppose that S(X) is complete. Then there exists u ∈ S(X), say u = Sv, such that Sx2n = y2n → u as n → ∞.

In fact, yn → u as n → ∞. Let us prove that f v = u.

d( f v, gx2n−1) ≤ a1(γn)d(Sv, T x2n−1) + a2(γn)d( f v, Sv) + a3(γn)d(gx2n−1, T x2n−1)

+ a4(γn)[d( f v, T x2n−1) + d(gx2n−1, Sv)]

≤ a1(γn)d(u, y2n−1) + a2(γn)d( f v, u) + a3(γn)d(y2n, y2n−1)

+ a4(γn)[sd( f v, u) + sd(u, y2n−1) + d(y2n, u)]

≤ [a1(γn) + sa4(γn)]d(u, y2n−1) + [a2(γn) + sa4(γn)]d( f v, u)

+ a3(γn)d(y2n, y2n−1) + a4(γn)d(y2n, u)

≤ λ[d(u, y2n−1) + d( f v, u) + d(y2n, y2n−1) + d(y2n, u)],
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with γn = (v, x2n−1). On taking n → ∞, d( f v, u) ≤ λd( f v, u). Since λ < 1, we have that d( f v, u) = 0,
i.e. f v = u. Thus u = Sv = f v.

Since u ∈ f (X) ⊂ T (X), there exists w ∈ X such that T w = u. Now we shall show that gw = u.

d( f x2n, gw) ≤ a1(δn)d(Sx2n, T w) + a2(δn)d( f x2n, Sx2n)

+ a3(δn)d(gw, T w) + a4(δn)[d( f x2n, T w) + d(gw, y2n)]

≤ a1(δn)d(y2n, u) + a2(δn)d(y2n+1, y2n) + a3(δn)d(gw, T w)

+ a4(δn)[d(y2n+1, T w) + sd(gw, T w) + sd(T w, y2n)]

≤ [a1(δn) + sa4(δn)]d(y2n, u) + a2(δn)d(y2n+1, y2n)

+ [a3(δn) + sa4(δn)]d(gw, T w) + a4(δn)[d(y2n+1, u)]

≤ λ[d(y2n, u) + d(y2n+1, y2n) + d(gw, u) + d(y2n+1, u)],

where δn = (x2n, w). On taking n → ∞, d(gw, u) ≤ λd(gw, u), i.e., gw = u. Thus u = gw = T w.
Suppose that there exists another coincidence point v∗ of the pair { f, S}. The contractive condition (1) yields:

d( f v∗, gw) ≤ a1(v
∗, w)d(Sv∗, T w) + a2(v

∗, w)d( f v∗, Sw) + a3(v
∗, w)d(gw, T w)

+ a4(v
∗, w)[d( f v∗, T w) + d(gw, Sv∗)] (5)

i.e. d( f v∗, f v) ≤ a1(v
∗, w)d( f v∗, f v) + a4(v

∗, w)[d( f v∗, f v) + d( f v, f v∗)] ≤ λd( f v∗, f v). Since λ < 1,
d( f v∗, f v) = 0, and so u = f v = Sv = f v∗

= Sv∗ is the unique point of coincidence of { f, S}.
Similarly u = gw = T w is the unique point of coincidence of {g, T }.
If the pairs { f, S} and {g, T } are occasionally weakly compatible, then for some coincidence point v of { f, S} and

w of {g, T }, f u = f Sv = S f v = Su = w1 (say) and gu = gT w = T gw = T u = w2 (say).

d(w1, w2) = d( f u, gu) ≤ a1(u, u)d(Su, T u) + a2(u, u)d( f u, Su)

+ a3(u, u)d(gu, T u) + a4(u, u)[d( f u, T u) + d(gu, Su)]

= [a1(u, u) + 2a4(u, u)]d(w1, w2) ≤ λd(w1, w2)

which implies that w1 = w2. Therefore f u = gu = Su = T u. Now we show that u = gu.

d(u, gu) = d( f v, gu) ≤ a1(v, u)d(Sv, T u) + a2(v, u)d( f v, Sv)

+ a3(v, u)d(gu, T u) + a4(v, u)[d( f v, T u) + d(gu, Sv)]

= [a1(v, u) + 2a4(v, u)]d(gu, u) ≤ λd(gu, u)

and gu = u. Thus u is a common fixed point of f , g, S and T . The uniqueness of the common fixed point is an
immediate consequence of the generalized contractive condition. The same can be proved if we assume instead that
T (X), f (X) or g(X) is complete. �

When the functions a1, a2, a3, a4 in the previous theorem are constants, we have the following corollary:

Corollary 10. Let f, g, S and T be self-mappings of a cone b-metric space X with the coefficient s ≥ 1, satisfying
f (X) ⊂ T (X), g(X) ⊂ S(X) and

d( f x, gy) ≤ a1d(Sx, T y) + a2d( f x, Sx) + a3d(gy, T y) + a4[d( f x, T y) + d(gy, Sx)]

for all x, y ∈ X, where a1, a2, a3, a4 ∈ [0, 1
s ) satisfy a1 + a2 + a3 + 2sa4 = λ < 1

s .
If one of f (X), g(X), S(X) or T (X) is a complete subspace of X, then { f, S} and {g, T } have a unique point

of coincidence in X. Moreover if { f, S} and {g, T } are (occasionally) weakly compatible, then f, g, S and T have a
unique common fixed point.

Corollary 11. Let f, g, S and T be self-maps of a cone metric space X with cone P having non-empty interior,
satisfying f (X) ⊂ T (X), g(X) ⊂ S(X) and

d( f x, gy) ≤ hux,y( f, g, S, T ), (6)
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where h ∈ (0, 1
s ) and

ux,y( f, g, S, T ) ∈


d(Sx, T y), d( f x, Sx), d(gy, T y),

d( f x, T y) + d(gy, Sx)

2s


(7)

for all x, y ∈ X. If one of f (X), g(X), S(X) or T (X) is a complete subspace of X, then { f, S} and {g, T } have a
unique point of coincidence. Moreover, if { f, S} and {g, T } are (occasionally) weakly compatible, then f, g, S and T
have a unique common fixed point.

Proof. If

ux,y( f, g, S, T ) ∈


d(Sx, T y), d( f x, Sx), d(gy, T y),

d( f x, T y) + d(gy, Sx)

2s


then

hux,y( f, g, S, T ) = a1(x, y)d(Sx, T y) + a2(x, y)d( f x, Sx)

+ a3(x, y)d(gy, T y) + a4(x, y)[d( f x, T y) + d(gy, Sx)]

where a1, a2, a3 : X × X → {0, h}, a4 : X × X → {0, h
2s } and a1(x, y) + a2(x, y) + a3(x, y) + 2sa4(x, y) = h < 1

s .
(This is possible when no two of a1, a2, a3, a4 can be simultaneously nonzero.)

It follows that f, g, S and T satisfy the contractive condition of Theorem 9, hence, they have a unique common
fixed point. �

Note that Corollaries 10 and 11 are generalizations of the main results in [7] to cone b-metric spaces: when s = 1
(cone metric spaces setting), Corollaries 10 and 11 become respectively Theorems 2.2 and 2.8 in [7]. Theorem 9
unifies the mentioned results then generalize them to cone b-metric spaces. Also note that the methodology of proof
of Corollary 11 is different from the methodology of proof of Theorem 2.8 in [7], perhaps even simpler.

Example 12. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = {1, 2, . . . , n}, n > 3, and d : X × X → E defined
by d(x, y) = ( 1

|x−y|
, 1

|x−y|
). (X, d) is a cone b-metric space with coefficient s =

(n−1)(n−2)
2n−3 . Consider the maps

f, g, S, T : X → X defined by f x = T x =


1, x = 1
n, x ≠ 1 , g(x) = 1 ∀x ∈ X and Sx =


1, x = 1
2, x ≠ 1 . The conditions of

Theorem 9 are satisfied with a1(x, y) =
n−2
n−1 < 1 and a2(x, y) = a3(x, y) = a4(x, y) = 0. 1 is the unique common

fixed point of f, g, S, T .

3. Applications

3.1. Multipled fixed points and fixed points in product spaces

Following the definition of coupled (e.g. [15,16]), tripled (e.g. [17]) and even quadruple fixed points (see [18]), it is
natural to generalize such notions to multipled fixed points. We recall here some definitions of the concept of multipled
fixed points as stated by Olaoluwa and Olaleru [19] and which are improvements of the definitions introduced by
Samet and Vetro [20] and Nashine et al. [21].

Let X be a nonempty set. Define, for any vector x = (x1, x2, . . . , xm) ∈ Xm , the circular matrix of x

t (x) :=


x1 x2 · · · xm−2 xm−1 xm
x2 x3 · · · xm−1 xm x1
x3 x4 · · · xm x1 x2
...

...
...

...
...

xm x1 · · · xm−3 xm−2 xm−1

 .

In the sequel, ti (x) denotes the i th line of t (x) and ti j (x) the (i, j)-th element of the matrix.
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Definition 13 (See [19]). Let X be a nonempty set and F : Xm
→ X and g : X → X be two mappings. An element

x = (x1, x2 . . . , xm) ∈ Xm is said to be a coincidence point of m-order (or simply, multipled coincidence point) of F
and g if

F(x1, x2, . . . , xm−1, xm) = g(x1)

F(x2, x3, . . . , xm, x1) = g(x2)

F(x3, x4, . . . , xm, x1, x2) = g(x3)
...

F(xm, x1, x2, . . . , xm−1) = g(xm)

or equivalently F(ti (x)) = g(xi ), ∀i ∈ {1, 2, . . . , m}.
In such case, (gx1, gx2, . . . , gxm) is said to be a multipled point of coincidence of F and g.
If in addition, all the xi are fixed points of g, then x is said to be a common fixed point of m-order (or common

multipled fixed point) of F and g.
If g = I dX , then x is said to be a fixed point of m-order or multipled fixed point of F .

When m = 1, 2, 3, 4, we obtain the notions of fixed points, coupled fixed points, tripled fixed points and quadruple
fixed points respectively.

Example 14 (See [19]). Let X = R and F : Xm
→ X be defined for all x = (x1, x2, . . . , xm) by F(x) =

2x1 + x2 + x3 + · · · xm − 1. The system F(ti (x)) = xi ∀i ∈ {1, . . . , m}, is satisfied by all x such that
m

j=1 x j = 1.

In particular,
 1

m , . . . , 1
m


and (1, 0 . . . , 0) are both multipled fixed points of F .

Definition 15 (See [19]). Let X be a nonempty set and F : Xm
→ X and g : X → X be two mappings. The

mappings F and g are called

(w1) w-compatible if g(F(x1, x2, . . . , xm)) = F(gx1, gx2, . . . , gxm) at any multipled coincidence point
(x1, x2, . . . , xm) of F and g.

(w2) w*-compatible if g(F(x, x, . . . , x)) = F(gx, gx, . . . , gx) whenever gx = F(x, x, . . . , x).

The relationship between multipled fixed points and fixed points in product spaces is hereby established by
considering what we tag “associate mappings” and proving the subsequent lemma. Consider the mappings F :

Xm
→ X and g : X → X and the “associate” mappings F̃ : Xm

→ Xm and g̃ : Xm
→ Xm defined for all

x = (x1, x2, . . . , xm) ∈ Xm by
F̃(x) = (F(t1(x)), F(t2(x)), . . . , F(tm(x)))

g̃(x) = (gx1, gx2, . . . , gxm).
(8)

The following lemma is obtained.

Lemma 16 (See [19]).

(i) An element x = (x1, x2, . . . , xm) ∈ Xm is a multipled fixed point of F or multipled coincidence point (or common
multipled fixed point) of F and g if and only if it is a fixed point of F̃ or multipled coincidence point (or common
multipled fixed point) of F̃ and g̃.

(ii) The maps F and g are w-compatible if and only if F̃ and g̃ are w-compatible in Xm .

The form of a multipled coincidence (or common fixed) point of F and g when it is unique and how it interrelates
the concepts of w-compatibility and w*-compatibility is expressed in the following remark:

Remark 17 (See [19]).

(i) If x = t1(x) = (x1, x2, . . . , xm) ∈ Xm is a multipled coincidence point, multipled point of coincidence or
common multipled fixed point of F and g then, by permutation, the elements t2(x), t3(x), . . . , tm(x) (where t (x)

is the circular matrix of x) are also multipled coincidence points, multipled points of coincidence or common
multipled fixed points of F and g. Hence, if x is unique as multipled coincidence point, multipled point of
coincidence or common multipled fixed point of F and g, then x = t1(x) = t2(x) = · · · = tm(x), and so
x1 = x2 = · · · = xm .
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(ii) If F and g are w*-compatible mappings with only one multipled coincidence point, they are also w-compatible
since, in such case, they would commute at their unique multipled coincidence point of the form (x, x, . . . , x)

from (i).

Example 18 (See [19]). Let X = R and F : Xm
→ X be defined by F(x) = 1 − m +

m
j=1 x j . F(ti (x)) = xi ∀i ∈

{1, . . . , m} ⇐⇒


j≠i x j = m − 1. The determinant of the system


0 1 1 · · · 1 1
1 0 1 · · · 1 1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 · · · 1 0

 = (−1)m−1(m − 1) ≠ 0,

hence the system has a unique solution, (1, . . . , 1), which is the unique multipled fixed point of F .

The notions of coupled fixed points, tripled fixed points and multipled fixed points in general are relative to
mappings defined on Xm , with m ≥ 1. The previous section discusses the existence of fixed points of contractive
maps defined in a cone b-metric space X . It is therefore of interest to equip Xm with the same cone b-metric structure.
The following subsection arises from this motivation and the notions therein introduced are generalizations of the
notion of product cone metric spaces introduced by Olaoluwa and Olaleru [19].

3.2. Finite product cone b-metric spaces

Definition 19. Let (X i , di ), i ∈ {1, 2, . . . , m} be m cone b-metric spaces with respect to cones Pi and coefficients si ,
where Pi ⊂ E for all i and Pi ∩ (−Pj ) = {0} for all i, j . The set Z =

i=m
i=1 X i together with d : Z × Z → E defined

by

d(x, y) =

m
i=1

di (xi , yi ), ∀x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym)

is a cone b-metric space with respect to cone P =
m

i=1 Pi and coefficient s = max si . Z is called product cone
b-metric space.

When X i = X for each i ∈ {1, 2, . . . , m}, where (X, d) is a cone b-metric space with respect to cone P ⊂ E , we
define the product cone b-metric space Xm with respect to P by considering the cone b-metric D : Xm

× Xm
→ E

by

D(x, y) =

m
i=1

d(xi , yi ), x = (xi )1≤i≤m, y = (yi )1≤i≤m . (9)

Note that when s = 1, the notion of product cone b metric space coincides with that of product cone metric
space introduced by Olaoluwa and Olaleru [19]. Convergence of sequences in a product cone b-metric spaces and
convergence of their coordinates are equivalent as expressed in the next proposition which is easy to prove.

Proposition 20. Let (X, d) be a cone b-metric space and (Xm, D) the product cone b-metric space.

(p1) A sequence {xn} = {(x1
n , x2

n , . . . , xm
n )} converges to x = (x1, x2, . . . , xm) if and only if the sequences {x i

n}

converge to x i for all i ∈ {1, 2, . . . , m}.
(p2) A sequence {xn} = {(x1

n , x2
n , . . . , xm

n )} is a Cauchy sequence in Xm if and only if the sequences {x i
n} are Cauchy

sequences for all i ∈ {1, 2, . . . , m}.
(p3) (Xm, D) is complete if and only if (X, d) is complete.

3.3. Consequences

Theorem 21. Let (X, d) be a cone b-metric space with coefficient s ≥ 1, f : Xm
→ X, g : Xm

→ X, S : X → X
and T : X → X be four mappings such that f (Xm) ⊂ T (X), g(Xm) ⊂ S(X) and

d( f x, gu) ≤

m
i=1

pi d(Sxi , T ui ) + qd( f x, Sx1) + rd(gu, T u1) + t[d( f x, T u1) + d(gu, Sx1)] (10)
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for all x = (x1, x2, . . . , xm), u = (u1, u2, . . . , um) ∈ Xm , where pi , (i = 1, 2, . . . , m), q, r, t ∈ (0, 1
s ) andm

i=1 pi + q + r + 2st < 1
s .

If one of f (Xm), g(Xm), S(X) or T (X) is a complete subspace of X, then { f, S} and {g, T } have a unique
multipled point of coincidence in X.

Moreover, if { f, S} and {g, T } are w-compatible, then f , g, S and T have a unique common multipled fixed
point (u, . . . , u) ∈ Xm and for every (x1

0 , x2
0 , . . . , xm

0 ) ∈ Xm , the sequences {xn} = {(x1
n , x2

n , . . . , xm
n )} ⊂ Xm and

{un} = {u1
n, u2

n, . . . , um
n } defined by

ui
2n−1 := f ti x2n−2 = T x i

2n−1

ui
2n := gti x2n−1 = Sx i

2n

∀i = 1, 2, . . . , m (11)

converge both to (u, u, . . . , u).

Proof. From (10) and by simple permutations, we have

d( f tk x, gtku) ≤

m
i=1

pi d(Stki x, T tki u) + qd( f tk x, Sxk) + rd(gtku, T uk)

+ t[d( f tk x, T uk) + d(gtku, Sxk)]

for every k ∈ {1, . . . , m}. Summing the m inequalities,

m
i=1

d( f (ti x), g(ti u)) ≤


m

i=1

pi


m

i=1

d(Sxi , T ui ) + q
m

i=1

d( f ti x, Sxi )

+ r
m

i=1

d(gti u, T ui ) + t


m

i=1

d( f ti x, T ui ) +

m
i=1

d(gti u, Sxi )


.

In view of (8) and (9),

D( f̃ x, g̃u) ≤


m

i=1

pi


D(S̃x, T̃ u) + q D( f̃ x, S̃x) + r D(g̃u, T̃ u) + t[D( f̃ x, T̃ u) + D(g̃u, S̃x)],

where f̃ , g̃, S̃ and T̃ are defined for all x = (xi )1≤i≤m ∈ Xm and u = (ui )1≤i≤m ∈ Xm by
f̃ (x) = ( f t1x, f t2x, . . . , f tm x)

g̃(x) = (gt1x, gt2x, . . . , gtm x)

S̃(u) = (Su1, Su2, . . . , Sum)

T̃ (u) = (T u1, T u2, . . . , T um).

The contractive condition in Corollary 10 is satisfied for f̃ , g̃, S̃ and T̃ .

We have


f (Xm ) ⊂ T (X) H⇒ f̃ (Xm ) ⊂ T̃ (Xm )

g(Xm ) ⊂ S(X) H⇒ g̃(Xm ) ⊂ S̃(Xm ).

If one of f (Xm), g(Xm), S(X) or T (X) is complete then f̃ (Xm), g̃(Xm), S̃(Xm) or T̃ (Xm) is complete in Xm ,
hence by Corollary 10 applied to the product cone b-metric space Xm , the pairs { f̃ , S̃} and {g̃, T̃ } have unique points
of coincidence which are, by Lemma 16, the unique multipled points of coincidence of { f, S} and {g, T }.

If in addition { f, S} and {g, T } are w-compatible then, from Lemma 16, { f̃ , S̃} and {g̃, T̃ } are w-compatible. By
Corollary 10, f̃ , g̃, S̃ and T̃ have a unique common fixed point which is the unique multiple common fixed point of
f, g, S and T . Because of the uniqueness, from Remark 17, it is of the form (u, . . . , u), for some u ∈ X .

Also, from Corollary 10, for any (x1
0 , x2

0 , . . . , xm
0 ) ∈ Xm , the sequences {xn} = {(x i

n)1≤i≤m} and {un} =

{(ui
n)1≤i≤m} defined by

u2n−1 := f̃ x2n−2 = T̃ x2n−1

u2n := g̃x2n−1 = S̃x2n
(12)
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converge to (u, . . . , u) ∈ Xm and (12) is equivalent to
ui

2n−1 := f ti x2n−2 = T x i
2n−1

ui
2n := gti x2n−1 = Sx i

2n
∀i = 1, 2, . . . , m.

Hence the sequences {xn} and {un} defined in (11) converge to (u, u, . . . , u) ∈ Xm . �

Theorem 21 extends Theorem 3.6 of Olaoluwa and Olaleru [19] to cone b-metric spaces. It also extends and
improves Theorem 2.4 of Abbas et al. [22] from maps defined in X2 to maps defined in Xm , m ≥ 2. The condition
of w-compatibility is also replaced with the weaker w∗-compatibility. Other results generalized are Theorems 2.2, 2.5
and 2.6 of Sabetghadam et al. [23] (results on coupled fixed points of one map) among others.

Example 22. Let X = [0, ∞), E = C1
R[0, 1], P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]} and d : X × X → E defined by

d(x, y) = |x − y|ϕ, where ϕ(t) = et
+ 1. (X, d) is a cone metric space, i.e. a cone b-metric space with coefficient

s = 1. Let α, β, γ ∈ R+ be such that α ≤ βγ <
β
m , where m ≥ 2 is an integer. Consider the mappings f, g : Xm

→ X
and S, T : X → X defined by f (x1, x2, . . . , xm) = g(x1, x2, . . . , xm) = α

m
i=1 xi and S(x) = T (x) = βx .

f (Xm) = g(Xm) = X which is complete. Also, { f, S} and {g, T } are w-compatible. The condition (3.3)
of Theorem 3.9 is satisfied for j = 1, q = r = t = 0 and pi = γ , ∀i ∈ {1, . . . , n}. That is, for all
x = (x1, . . . , xm), u = (u1, . . . , um) ∈ Xm ,

d( f x, gu) ≤

m
i=1

γ d(Sxi , T ui ).

Hence F and g have a unique common multipled fixed point (x∗, . . . , x∗) ∈ Xm . It is easy to notice that x∗
= 0.
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