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This paper focuses on the stability regions of numerical methods and to demonstrate its suitability for the solution stiff
ordinary differential equations. In particular, the purpose of this paper is to generate the stability region for methods
of Continuous Block Backward Differentiation Formulae (CBBDF) that simultaneously generate the approximate
solution of the stiff ODEs. The practical importance of the methods is established for the stability regions since it
cover the whole of the negative half-complex plane.
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1. Introduction

Many numerical techniques have appeared in the literature for the numerical solution of stiff ini-
tial value problems (IVPs) and these techniques depend on many factors including rate of conver-
gence, computational cost, data-storage requirements, accuracy, and stability. Chu and Hamilton [1],
Shampine and Watts [2] both suggested that the stability problem appears to be the most serious
limitation of block methods. Over the last two decades various types of block methods have been
developed for the solution of stiff and non-stiff systems of ordinary differential equations (ODEs), for
instance [3–5].

Our aim is to investigate the linear stability properties of the continuous block BDF constructed
based on collocation and interpolation. Below we give some basic definition of stability of a multistep
method given in Lambert [6].

Definition 1.1 The k-step linear multistep method (LMM) for the solution of the differential equation

y′ = f(t, y), t ∈ [t0, Tn], y(t0) = y0 (1)

where f satisfies a Lipschitz condition as given in Henrici [7] is conventionally written as

k∑
j=0

αjyn+j = h

k∑
j=0

βkfn+j . (2)
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Where h is the step size, αk = 1, αj , βk are unknown constants which must be determined and k is
the step number of the particular method employed.

Definition 1.2 The first characteristic polynomial ρ of degree k associated with the general method
(2), whose coefficients are αj and the second characteristic polynomial σ whose coefficients are βj are
defined by

ρ(z) =

k∑
j=0

αjz
j , σ(z) =

k∑
j=0

βjz
j (3)

where z ∈ C the complex plane. Thus stability is determined by the location of the roots of the
characteristic polynomials.

Definition 1.3 The linear multistep method (2) is said to satisfy the root condition if all of the roots
of the first characteristic polynomial have modulus less than or equal to unity, and those of modulus
unity are simple. The method (2) is said to be zero-stable if it satisfies the root condition.

Definition 1.4 The linear multistep method (2) is said to be absolutely stable in a region S for a fixed
z = hλ if for all the roots bi of the stability polynomial

ϕ(b, z) = ρ(b)− zσ(b) = 0 (4)

satisfy |bi| < 1, i = 1, 2, . . . , k.

Definition 1.5 A numerical method is said to be A-stable if its region of absolute stability contains
the whole left plane.

2. Stability Theory of Block Numerical Methods for ODEs

In this section, we introduce the basic definition of a block method described by Fatunla [8]. Let Yn
and Fn be vectors defined by

Yµ = [yn+j ]
T , j = 1, 2, . . . , s (5)

Fµ = [fn+j ]
T , j = 1, 2, . . . , s (6)

respectively. Then a general k-step, continuous block method is a matrix finite difference equation of
the form

Yµ =
ℓ∑

j=0

ηjyµ−j + h
ℓ∑

j=0

γjfµ−j . (7)

Where all ηj , γj are the right s× s matrix coefficients and µ = 0, 1, 2, . . . represent the block number,
n = µs the first step number in the µ-th block and s is the proposed block size.

3. Derivation of The Method

The block algorithm proposed in this paper is based on interpolation and collocation, see [9–13] and
their references therein. we proceed by seeking an approximate of the exact solution y(t) by assuming
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a continuous solution Y (t) of the form

Y (t) =

q+r−1∑
j=0

mjφj(t). (8)

Such that t ∈ [t0, Tn], mj are unknown coefficients and φj(t) are polynomial basis functions of degree
q + r − 1, where the number of interpolation points q and the collocation point r are respectively
chosen to satisfy q = k and r = 1. The integer k ≥ 1 denotes the step number of the method. We
thus, construct a k-step block methods with φj(t) = tjn+i by imposing the following conditions

q∑
j=0

mjt
j
n+i = yn+i, i = 0, . . . , q − 1 (9)

q∑
j=0

mjjt
j−1
n+i = fn+i, i = k (10)

where yn+j is the approximation for the exact solution y(tn+j), fn+j = f(tn+j , yn+j), n is the grid
index and tn+j = tn + jh . It should be noted that equation (9) and (10) leads to a system of q + 1
equations of the form AM = C where

A =



t0n tn t2n . . . tqn
t0n+1 tn+1 t2n+1 . . . tqn+1
t0n+2 tn+2 t2n+2 . . . tqn+2
...

...
...

...
...

t0n+q−1 tn+q−1 t
2
n+q−1 . . . tqq−1

0 1 2tn+k . . . qtq−1
n+k



M = (m0,m1,m2, . . . ,mk)
T

C = (yn, yn+1, yn+2, . . . , yn+k−1, fn + k)T

which must be solved to obtain the coefficients mj . After some algebraic computations our k-step
continuous block BDF method is then obtained by substituting these values of mj into equation (4).
We then obtained the expression in the form

Y (t) = −
q−1∑
j=0

αj(t)yn+j + hβk(t)fn+k (11)

where αj(t) and βk(t) are continuous coefficients. The method (11) is then used to generate the
standard BDF method of order k at the desired point t = tn+i, i = 1, 2, . . . , q.

The additional methods are then obtained by evaluating the first derivative of (11) given by (12) at
q − 1 number of points.

Y ′(t) =
1

h
(

q−1∑
j=0

α′
j(t)yn+j + hβ′

k(t)fn+k). (12)
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These additional integrators (12) are combined with the standard BDF (11) and implemented as a
self starting block method for any desired step number.

For k = 2 taking q = k, φj(t) = tjn+i, i = 0, 1, 2 and thus evaluating (11) at t = tn+2, and combined
with (12) at t = [tn+1] we generate the block method (13).

fn+1 = 1
3h [hfn+2 − 2yn + 2yn+1]

yn+2 = 1
3 [2hfn+2 − yn + 4yn+1]

 (13)

Similarly, specifying k = 3, q = k , φj(t) = tjn+i, i = 0, . . . 3 and thus evaluating (11) at t = tn+3,
together with (12) at t = [tn+1, tn+2] we have the block method (14)

fn+1 = 1
11h [−hfn+3 − 4yn − 4yn+1 + 8yn+2]

fn+2 = 1
22h [4hfn+3 + 5yn − 28yn+1 − 23yn+2]

yn+3 = 1
11 [6hfn+3 + 2yn − 9yn+1 + 18yn+2]

 (14)

4. Stability Analysis

In what follows, the k-step continuous block BDF can be generally rearranged and rewritten as a
matrix finite difference equation of the form

A(1)Yω+1 = A(0)Yω + hB(1)Fω (15)

where

Yω+1 = (yn+1, . . . , yn+k−1, yn+k)
T ,

Yω = (yn−k+1, . . . , yn−1, yn)
T ,

Fω = (fn+1, . . . , fn+k)
T ,

for ω = 0, . . . and n = 0, k, . . . , N − k. And the matrices A(1), A(0), B(1) are k by k matrices.

Zero stability: It is worth noting that zero-stability is concerned with the stability of the difference
system in the limit as h tends to zero. Thus, as h → 0, the method (15) tends to the difference system

A(1)Yω+1 −A(0)Yω = 0

whose first characteristic polynomial ρ(R) is given by

ρ(R) = det(RA(1) −A(0)) =
U

V
Rk−1(1−R). (16)

Following Fatunla [8], the block block method (15) is zero-stable, since from (16), ρ(R) = 0 satisfies
|Rj | ≤ 1, j = 1, . . . , k, and for those roots with |Rj | = 1, the multiplicity does not exceed 1.

For k = 2,

A(1) =

( −2
3 0
−4
3 1

)
A(0) =

(
0 −2

3
0 −1

3

)
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ρ(R) = Det[RA(1) −A(0)] =
2R

3
− 2R2

3
. (17)

Similarly for k = 3,

A(1) =

 4
11 − 8

11 0
28
22 −23

22 0
9
11 −18

11 1

 A(0) =

0 0 4
11

0 0 5
22

0 0 − 2
11



ρ(R) = Det[RA(1) −A(0)] = −6R2

11
+

6R3

11
. (18)

The zero stability, for k = 2 and k = 3 are determine from (17) and (18) by setting ρ(R) = 0. Thus
we have R = 0 and R = 1 for (17) and R = 0 twice and R = 1 for (18). Therefore the continuous
block BDF is zero stable. Since one of the roots is +1.

4.1 Linear Stability

The linear stability properties of the continuous block BDF methods are determined by expressing
them in the form (15) and applying them to the test problem

y′ = λy, λ < 0.

We have the expression

Yω+1 = D(z)Yω, z = λh, (19)

where the matrix D(z) is given by

D(z) = (A(1) + zB(1))−1 ∗A(0). (20)

The matrix D(z) has eigenvalues {d1, . . . , dk} = {0, . . . , dk}, where the dominant eigenvalue dk is the
stability function L(z) : C → C which is a rational function with real coefficients. For k = 2, we have
that

B(1) =

(
1 −1

3
0 −2

3

)
And from(20) the stability function R(z) is given by

L(z) =
2 + z

2− 3z + 2z2
. (21)

While for k = 3,

B(1) =

1 0 1
11

0 1 − 4
22

0 0 − 4
11


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And from (20) the stability function L(z) is given by

L(z) =
6 + 6z + 2z2

6− 12z + 11z2 − 6z3
(22)

in the spirit of Hairer and Wanner [14], the stability regions for both k = 2 and k = 3 are drawn
using the equations (21) and (22) as shown in Fig. 1 and Fig.2 respectively. In Figures below, the
rectangles represent the zeros and plus signs represent the poles of (21) and (22). The plots in white
on the left half of the complex plane represent the stability region which corresponds to the stability
function (21) and (22) respectively. Clearly, from the figures, it is obvious that methods (13) and (14)
are A-stable since according to Hairer and Wanner [14] there are no poles of the stability functions in
the left half complex plane.

Figure 1.: Stability Region k = 2.

Figure 2.: Stability Region k = 3.

5. Numerical Experiments

This section deals with some numerical experiments which illustrate the results derived in the previous
sections. Our main aim is to show the good stability properties of the continuous block BDF method.
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Experiment 5.1 Experiment 5.1 Consider the systems of first order differential equations on the range
0 ≤ t ≤ 10,

y′1 = 198y1 + 199y2, y1(0) = 1 y′2 = −398y1 − 399y2, y2(0) = −1.

With solution

y1(t) = e−t, y2(t) = −e−t and λ = 1, 200.

This problem has also been solved by Zarina et al. [5] using implicit r-point block BDF method
that was implemented using starting values generated from other method. Their results are here
reproduced in Table 2, 3 and For different choices of the constant stepsize h the maximum absolute
error is compared with our methods that are implemented as a self starting methods without the use
of starting values except the initial value from the problem.

Table 1.: Maximum error and the rate of convergence ROC = log2(
e2h

eh ), eh is the maximum absolute
error for h, for Continuous Block BDF of order 2 and 3 for Experiment 5.1

k = 2 k = 3
h Step Maximum Error Rate Step Maximum Error Rate
0.1 50 6.2× 10−4 − 33 4.7× 10−5 −
0.05 100 1.5× 10−4 2.0 66 5.9× 10−6 3.0
0.025 200 3.8× 10−5 2.0 133 7.2× 10−7 3.0
0.0125 400 9.6× 10−6 2.0 266 9.0× 10−8 3.0

Table 2.: A comparison of methods for Experiment 5.1, MaxError1t≤10 = |yi − y(ti)|

Our method Zarina et-al
Maximum Error Maximum Error

h Step k = 2 k = 2

0.01 500 6.13171× 10−6 7.18323× 10−3

0.001 5000 6.13133× 10−8 7.34012× 10−4

0.0001 50000 6.14110× 10−10 7.35584× 10−5

Experiment 5.2 As our second test experiment, we solve the given stiff parabolic equation (see
Cash[15]) via the method of lines technique; where we discretize the space derivatives in such a
way that the resulting system of ordinary differential equations (ODEs) is stable. We then discretize
the time derivatives using the CBBDF which provides multiple discrete methods that are combined
and applied as a single matrix equation

∂u

∂t
= κ

∂2u

∂x2
, u(0, t) = u(1, t), u(x, 0) = sinπx+ sinωπx, ω ≫ 1.

The exact solution u(x, t) = e−π2κt sinπx+ e−ω2π2κt sinωπx.
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Table 3.: A comparison of methods for Experiment 5.1, MaxError1t≤10 = |yi − y(ti)|

Our method Zarina et-al
Maximum Error Maximum Error

h Step k = 3 k = 3

0.01 333 4.61670× 10−8 1.07308× 10−2

0.001 3333 4.60608× 10−11 1.10060× 10−3

0.0001 33333 6.60305× 10−13 1.10333× 10−4

Cash[15] notes that as ω increases, equations of the type given in Experiment 5.2 exhibit character-
istics similar to model stiff equations. Hence, the methods such as the Crank-Nicolson method which
are not A-stable are expected to perform poorly. However, we found that our methods are A-stable,
and perform relatively well when applied to this problem. This is due to the fact that our methods
are applied in block form on non-overlapping intervals, hence the accumulation of errors is reduced as
the integration proceeds on the global interval of interest. In table 4, we display the results for κ = 1
and a range of values for ω.

Table 4.: A comparison of errors of methods for Experiment 5.2 at t = 1 and ω = 1, ∆x = 0.1,
∆t = 0.1

ω Step 2 BDF Crank-Nicolson Cash (2.6a, b) Cash (2.13a, b, c)

1 1.34× 10−5 6.20× 10−5 3.7× 10−5 1.5× 10−5

2 6.63× 10−6 3.83× 10−5 1.8× 10−5 7.4× 10−6

3 6.65× 10−6 9.30× 10−3 1.9× 10−5 7.4× 10−6

5 6.71× 10−6 1.80× 10−1 1.8× 10−5 7.4× 10−6

10 6.71× 10−6 6.10× 10−1 1.8× 10−5 7.4× 10−6

6. Conclusion

Two continuous Block Backward Differentiation Formulas (CBBDF) have been presented and im-
plemented as self starting methods for solution of ordinary differential equation. The good stability
property of our method makes it attractive for numerical solution of stiff problems. We have demon-
strated the efficiency of our method over existing methods as shown the tables above.
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