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ABSTRACT !

\

Mutant huntingtin gene can bind to transcription factors, resultihg in reduced levels of 'I
1

i
: . l
acetylated histones. One consequence of this appears to be a decreased expression of |

: I
genes which may play critical roles in neuronal survival. Early motor signs of ‘|‘
|

' |
Huntington’s disease (HD) typically include the gradual onset bf clumsiness, balance

difficulties, and brief, random, fidgeting movement. Many HD patients develop a

|
distinctive manner of walking (gait) that may be unsteady, disjointed, or lurching. In this

. |

work an attempt has been made to promote a better understanding of the physiological

chorea associated with the human-health hazard of HD origin by prbposing a crisp model

which describes the arm gait of a Huntington’s disease patient. However, the

mathematical solution proffered to the proposed model by Frobenius method, failed to \

|
capture the staccato nature of the jerk for which the model has been proposed. To this

end, we have carried out an artificial neural network (ANN) simu]atibn of the arm gait of

a HD patient, based on the same set of data as the crisp model. We therefore carried-out

we have designed our proposed model for the management of neurodégenerative diseases

based on the physiological presentation (i.e. chorea) of Huntington’s disease. It is

believed that this work will form a basis for biomedical engineering device for the

management of chorea in HD.

|

|
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‘l
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\

\

|
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an expository analysis of the arm gait of HD patients using ANN techniques upon which ‘}
1 |
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CHAPTER ONE ;

INTRODUCTION

1.0 Background to the Study

Huntington’s disease (HD), earlier known as Chorea or Hereditary Chorea, due to writhe,
twist, constant uncontrollable dance-like motion of various partslll of the body of the

affected person, is a progressive ncural disorder that causes untold suffering for
thousands of families. The history of HD dated back to at least the middle ages, Lanska,

D.J. (2000). The name Huntington’s disease was coined out of the nafme of an American
physician George Huntington who wrote about the illness way back in'1872, describing it

as “an heirloom from generations away back in the dim past”, Huntingt'_on, G. (1872). HD

results from genetically programmed degeneration of nerve cells, called neurons, in

certain areas of the brain, Kopp, P. et al (1998). This degeneration caus:'ps, Guyton, A.C.
et al (1996):

i
L]

Uncontrolled movements (physiological)

i\
Loss of intellectual faculties (psychiatric), and
L ]

Emotional disturbance (psychological).

Specifically affected are cells of the basal ganglia, structures deep within fhe brain that

perform many important functions, including coordinating movement. Within the basal

42

ganglia, HD especially targets neurons of the striatum, particularly those in L_the caudate
nuclei and the pallidum. Also affected is the cortex (the brain's outer surf!e‘lce) which

controls thought, perception, and memory. HD is found in every country of tﬁg world. It

1

IR
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mutation or misspelling in the normal gere, Shi-Hua, L. et al (20()4).

ucleus
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Figure 1: Putamen circuit for subconscious execution of learned pattern of movement

(LEFT); and the relation of the basal ganglia circuitry to the corticospinal cerebellar
system for movement control (RIGHT) :

A single abnormal gene, the basic biological units of heredity, produces HD Genes are

composed of deoxyribonucleic acid (DNA), a molecule shaped like a spiral;';lladder. Each

rung of this ladder is composed of two paired chemicals called bases. There are four

types of bases; adenine, thymine, cytosine, and guanine, each abbreviated :by the first

letter of its name: A, T, C, and G. Certain bases always "pair" together, al}d different

\

I
every country of the world. It is a familiar disease, passed from;‘:.parent to child through !Ia

|
b
I

T
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combinations of base pairs join to form coded messages. A gene is a long string of this

DNA in various combinations of A, T, C, and G. These unique combinations determine i\‘
il

: i
i |
the gene's function, much like letters join together to form words., Each person has about |

30,000 genes (a billion base pairs of DNA or bits of information ré_peated in the nuclei of

i
|

|
human cells, which determine individual characteristics or traits). ;:

Genes are arranged in precise locations along 23 rod-like pairs o:'f chronmosomes. One |
chromosome from each pair comes from an individual's mother, the (I;i_gther from the father. '}
Each half of a chromosome pair is similar to the other, except %pr one pair, which l\

l.
determines the sex of the individual. This pair has two X chromoso{nes in females and

one X and one Y chromosome in males. The gene that produces HD lies on chromosome

I
4, one of the 22 non-sex-linked, or "autosomal” pairs of chromosomes, placing men and

women at equal risk of acquiring the disease. The impact of a gene depends partly on

whether it is dominant or recessive. If a gene is dominant, then only one of the paired

chromosomes is required to produce its called-for effect. If the gene is recessive, both \
parents must provide chromosomal copies for the trait to be present. HD is called an

\
autosomal dominant disorder because only one copy of the defective gene, inherited

from one parent, is sufficient to produce the disease.

i
|

. \
The genetic defect responsible for HD is a small sequence of DNA on "‘.‘Ichromosome

e —

4pl16.3 in which several base pairs are repeated many, many times. The normal gene has

three DNA bases, cofnposed of the sequence CAG. In people with HD, the sequernce

R

abnormally repeats itself dozens of times. Over time and with each successive ‘generation,

the number of CAG repeats may expand further.

o
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Each parent has two copies of every chromosome but gives only_ one copy to each child.

[

Each child of an HD parent has a 50-50 chance of inheriting the 1D gene. If a child does I'-I
not inherit the HD gene, he or she will not develop the diseaseé, and cannot pass 1f to I'[
subsequent generations. A person who inherits the HD gene, and .I:;survives long enough, |
will sooner or later develop the disease. In some families, all the c};':ildren may inherit the
HD gene; in others, none does. Whether one child inherits the ge;ile has no bearing on

whether others will or will not share the same fate. However, a small number of cases of
HD are sporadic, that is, they occur even though there is no family history of the disorder.
These cases are thought to be caused by a new genetic mutation-an alferation in the gene

that occurs during sperm development and that brings the number of "_.CAG repeats into
the range that causes disease.

Of inierest to us is the modeling of the management of choreiform move;'pent in HD. The “
question of control of the ailment does not arise since the etiology of tﬁ's: disease is not

properly understood now. To achieve the stated aim, we have arranged c%ur work in the l
following order. The first chapter introduces the subject matter. Cha;{ter two gives i
various definitions, and a detailed survey of previous work. The third chai_ater discusses

the problem formulation, assumptions and proffered solutions. The chapter.‘lalso outlines

how HD affects the neural motor circuitry system in the body and the exisi’ing medical

practices as regards the treatment of HD with drugs. A short preview of ‘an existing

practice in medicine involving applications of electroconvulsive devices in Parkinson’s

o~

diseases; and the mathematical considerations for computer simulation for the arm gait in

HD are also contained in chapter three. Chapter four contains summary of reé_ults. The
‘-"H
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are itemized in the fifth and indeed the last chapter.

1.1 Statement of the Problem

A concise statement of the problem requires the identification of péssible factors that are
responsible for the chorea in the arm of Huntington’s discase patientt'.and the development

of an adequate model! for the arm gait which can serve as basis for a Neuro-therapy. Such

a model can be either crisp or one based on Artificial Neural Networkl(ANN) simulation.

Neurodegenerative diseases are ailments which have devastating e.f:fect on both the
patients and the caretakers alike. The_ﬁrst intervention in mild chorea::‘.:is discontinuous
use of drugs that have potential to exacerbate symptom of HD. Tre;itment therefore
begins with a trial and error session whereby drugs are administered ali_d the patient 1s
examined to determine if the drugs will exacerbate hyperactivity in the:"-, patient. If the
drugs aggravate hyperactivity in the patient they are stopped promptly. However, if they
don’t, other afier-effects are tested for before such drugs are recomméhded for the
patient’s usage. Major setback to this practice includes the possibility ofz‘; introducing
variety of latent devastating conditions with symptoms that may remain con..'cealed until
much later and at considerable risk to the patient. Moreover, present clini(;'al practice
where drugs are administered on patients aé_ a panacea to the disease is cué‘pbersome
because, in addition to their devastating side effect, such drugs also degrade the.l'fcllbility of
patients to function. This study is therefore aimed at developing a mathematic;ll model

that will promote a better understanding of the physiological features of the disease in

conclusions, contributions to knowledge and the recommendations for further research
o

i
|

i

T -

i



i
order to provide a framework upon which a viable Neurotherapy for the management of

such ailment could be built.

1.2 Objectives of the Study

The objectives of this study are:

1. To formulate a representative model of the writhe, twist, uncontrol‘lllable dance-
like motion of the arm of neuropath suffering from the Huntingtlonl’s disease
(HD). i ' \_

2. To provide a mathematical solution to the proposed model and relate to the arm
gait of such a neuropath.

3. To establish thflh basis for a control mechanism by illustrating our research
findings with an interactive computer simulation based on Artificial Neural
Networks. |

1.3  Scope and Limitations of the Study

Merriam Webster (1996) defines disease as an impairment of the normal state of the
living animal or plant body or one of its parts that interrupts or modifies the pe':rformance
of the vital functions and is a response to environmental factors (as malnutrition,
industrial hazards or climate), to specific infective agents (as worms, bacteria, or virus),
to inherent defects of the organisms (as genetic anomalies), or to combination of these
factors. Several diseases are curable by drugs but in some cases such drugs have been
more of hazard than of help to the patients. Even when they cure the disease'they are

invariably administered in overdose thereby degrading the ability of the patient to

function. However, electroconvulsive therapy only administers adequate volume of the

drugs required to curb the ailment at programmed intervals. In view of the foregoing,

6



N2

X

modeling for management of neuro-degenerative disease and the result of this study
should no doubt have wide applications in neurology and various fields of medicine
where drug therapy can produce devastating side effects on the patients. It will also find

wide applications in any inter-modal system structures involving transmission of fluid.

1.4  Significance of the Study

Research efforts are ongoing on the etiology of Huntington’s disease. Contrci)l of the
ailment will be a mirage without an indebt understanding of the etiology of the disease. In
other to assist the sufferers live a normal life, research efforts have been geared towards
the management of the various conditions associated with HD. One of such conditions is
the choreiform movements that constitute a major physiological symptom of thé disease.
However, interventions through drug administration have proved to be disma]? failures.
Nonetheless, Several research efforts have been made in the area of appliication of
electroconvulsive therapy to manage chorea associated with patients of Huritington’s
disease. In this regards, Metrode incorporation, UK, has manufactured a d¢ep brain

: !

stimulation nanorobot of the size of the head of a push pin which can be introduced into
human system with the sole aim of managing the physiological considerations as may, for
example be prevalent in a Parkinson’s disease patient. It should as a managemer%t strategy
be possible for an electrode to be implanted in a patient’s brain, and made c;ipable of
sending out electrical impulses at programmed interval(s) with the solc? aim of
neutralizing the excitatory post synaptic potential that aggravates the HD condition. It is

imperative however to note here that there have been major achievements in area of

application of deep brain technology in the management of similar conditions such as

:

|
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treatment of depression, tremors, slowness of movement and rigidity to mention but a

few. A major achievement of Metrode incorporation’s device is the ability of the

electrode to deliver electrical stimulation to the brain which essentially rewires the brain
i

by restoring contacts between neurons.

There are various techniques used in solving real life problems in engineéring and
sciences. Some of these techniques include empirical, analytical and artificial in{feiligence
methods. Empirical method involves performance of experiments, co]lectioh of data
arising from the experiments, data analysis in that order to mention but a few; b;lt in most
cases empirical analysis often lead to modeling, and analytical procedures ar"e used to
determine the future behavioral pattern of such physical systems. On the other hand,
analytical method requires the identification of usefu! parameters each Eof which
represents an attribute of the physical system under consideration. A close study of
combinations of these attributes results in a governing rule called an equr;tion (or a
model) of the physical system which constitutes a class of problems. In artificial

intelligence (Al), efforts are geared towards the simulation of the behaviour of the

physical system by generating a set of data that may be used to train the Al system to
!

emulate the activities of the physical system..
i

i
In this study, we have employed both the analytical method involving modeli?ng, and the
artificial intelligence method involving simulation of an artificial neural network (ANN).

The analytical method gave birth to a crisp model which defines both the cholfeoathetosis

and the choreiform associated with HD. However, the solution gave a smooth parabolic
F
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curve which is in total agreement with the experimental evidence of Flash and Hogan
(1985) and the Nernst equation for the state of equilibrium of arm at resting ]iaotential as
contained in the work of Susan Greenfield (1999). Even though the crisp model agrees
with the pioneering work of Flash and Hogan its solution fails to capture the staccato
nature of the jerky motion exhibited -by the arm of HD patients. It is clear from our

analysis that the ANN model did not fail in this respect. These two methodsi have been

carefully analyzed in chapter three.

This particutar study is deemed necessary to aid the development of fully iﬂtelligent
: |

1
system that is aimed at: :

e Providing a rational basis for the design of an artificial intelligent mechanism that
ultimately controls the unwanted motion.
e Providing a more efficient basis for determining level of physiological
information (signals) needed to control hyperkinetic reactions in HD, and
* Providing a more efficient and targeted management of similar ailmcpts such as
Parkinson’s disease, Alzheimer’s disease, disease of the cerebellum, e]%ilepsy and
contractions during childbirth. i
Science has now reached a stage in the field of nanomedicine where in the nearest future
nanorobots can be introduced into the body system of a patient which will release drug at
programmed intervals to curb an ailment. The purpose of our study theréfore is to
propose a platform for this mechamism. The world is getting more sophistiéated each

passing moment with the development of varieties of self driven control devices which

may be applied in the field of medicine to tackle diverse motor neural disorcllers which

7
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makes the research both justifiable and desirable. The practical significant Qf the results
for an Huntington’s disease patient is that, since the unwanted motion (in form of
periodic jerk) experienced in the arm of the HD patient constitutes a noigse to all the
activities of the patient, imposing a control on the vibration will bring about a relieve to
the patient. The essence of this work is to provide a basis for the design of an artificial

intelligence device which ultimately controls the unwanted movement.

1.5 Research Questions

!
In an attempt to channel our research effort toward a rewarding goal, we shall endeavour

to provide adequate answers to the following research questions; viz:

o Which engineering tools can we employ for modeling the arm gait of
Huntington’s disease patient?

¢ What method of solution can we employ to solve the model above?

¢ Which of the engineering tools employed for modeling the a?rm gait of

Huntington’s disease is most adequate?

1.6  Operational Definition of Terms

The following table contains the definitions of the frequently used terms in the body of

the thesis.
Acceleration The rate of change of velocity with time :
Jerk The rate of change of acceleration with time

10



Velocity

Electromotive Force

Mechanical Force
Absolute Temperature
Neurotransmitter
Real Valued Function
Gibbs Free Energy
Charge on the ion
Mean value

Chemical potential
Gait

Dysphagia

Kinematics

ANN
Artificial
Neural cell
Dominant trait

Recessive trait

DNA

Crisp
Neuropath
Trinucleotide

Glutamine

The rate of chance of displacement with time |,

Maximum electrical energy generated by a chemical
process

The force that moves a particle from one point t4 another
Temperature measured on Kelvin scale

A substance that transmits nerve impulses acrossll a synapse
A function which domain is a subset of the real number
The energy that drives a chemical process

Valency of molecule in solution or molten state Ii

Average of numerical values '
Electromotive force |

A manner of moving resemblance of how a horse' moves

Difficulty in swallowing

A branch of physics that deals with aspects of moiion apart

from consideration of mass and force |

Artificial neural network
i
Humanly contrived often on a natural model

One of the cells that constitute the nervous tissue !

A dominant genetic factor !
A character that produces little or no phenomenon;

Any of various nucleic acids that are usually the molecular
basis of heredity '

Based on traditional mathematical formulation |
An individual subject to nervous disorders

Codon

|
Crystalline amino acid that is found both free and in protein

i
i 11
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Electroconvulsive
Disorder
Neurology

Acetylcholine

Electrochemical

Fluid element

Parabolic smooth curve

Axon

Codon

Gene

Simulation

IPsp

Hyperkinetic
Model
GABA
Pathogenesis

Chorea

in animals

Relating to a convulsive response to a shock from electricity
An abnormal physical or mental condition

The scientific study of the nervous system

A neurotransmitter that is active in the transmission of

nerve impulse

Involving relationship of electricity to chemical changes
and interconversion of chemical and electrical energy

Neurotransmitter

A curve of a shape of parabola which does not have

discontinuity at any point ;

The pathway of neurotransmitter from the nerve cell body
to the synapse of a post synaptic neuron

A specific sequence of three consecutive nucleotides that is
part of the genetic code and that specifies a particular amino
acid in a protein or starts or stops protein synthesis

The functional unit of inheritance controlling the

transmission and expression of one or more traits.
|

The deliberate making of a certain condition that could exist

in reality

Inhibitory post synaptic potential (neurotransmitter that
inhibits motion '

Uncontrollable muscular movements
An abstraction of real life situation I
Gamma-aminobutyric acid

The origination and development of a disease ,

Spasmodic movement of the limbs and facial muscles and
by incoordination

' 12



Choreiform
Neurodegenerative
Mutation
Huntingtin
Autosomal

Athetosis

EPSP

Chorea
Gradual degrading of the brain tissues

A relatively permanent change in hereditary material
A protein that assists in body building

Of body
A nervous disorder that is marked by continual slow

movement

Excitatory post synaptic potential (neurotransmitter) such as
Acetylcholine, is a neurotransmitter which exciies

postsynaptic neurons

a0
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CHAPTER TWO

REVIEW OF LITERATURE

2.1 Preamble

For clarity we have organized this chapter in three sections. Section 2.1 contains a
systematic review of works on the pathogenesis of Huntington’s disease EImd relevant
hypotheses and theories that promotes the understanding of HD. In section 22 we have
considered the review of related works that culminated in our formulation of f}le classical
model of jerk motion exacerbated by the excitatory post-synaptic potential m neuronal
circuit of the arm of HD patient while section 2.3 delved into the artiﬁicial neural

networks analytic approach to the jerky motion of arm of HD sufferers.

2.2  The Huntington’s Discase

In a publication of NINDS (2000) titled, Huntington’s disease: Hope througl;: research,
the origin of expository study of the disease was systematically outlined. Margolis and
Ross (2003) deﬁned Huntington’s disease as a rare, progressive, and fatal autosomal
neurodegenerative disorder, typically of adult onset, that has captured the imagination of
the scientific and medical community far in excess of its direct impact on publlic health.
Guyton and Hall (1996) defined Huntington’s disease as a hereditary disorder T:h{lglt usually
begins to cause symptoms in the fourth or fifth decade of life. According to GLf_yT.on and

Hall, HD is characterized at first by flicking movements at individual joints and then

progressive severe distortional movements of the entire body. In their own work, Shi-Hua



and Xiao-Jiang (2004) simply described the disease as the most common gerietic disease
that is caused by an expansion of a polyglutamine (polyQ) tract in the associ%lted disease
protein. Features common to these definitions revealed the fact that HD is a common
hereditary neurodegenerative disorder that has no regards for gender or race.
Huntington’s disease (HD) was coined out of the name of an American physic:_ian George
Huntington who wrote about the illness way back in 1872, Lanska, D.J. (20b0). Itisa
complex neural disorder that causes untold suffering for thousands of families%, Kopp, P.
and Jameson, J.L. (1998). HD results from genetically programmed degeﬁ.eration of
nerve cells in certain areas of the brain. The genetic defect responsible for HD: is a small
sequence of DNA on chromosome 4 in which several base pairs are repeated mijcmy, many
times, Gardian, G. et al (2004); Peterson, S.P. (2006); Squitierri, F. et al (2003); Tassicer,
R. et al (2003).

2.2.1 The Pathogenesis of Huntington’s Disease !
Marcolis, R.L. et al (2001); Shi-Hua, L. et al (2004) proclaimed that Huntington%s disease
was the first gene mapped to a chromosomal locus by use of anonymous mar}kers that
provided the molecular tools for predictive genetic testing by linkage analysis. The
molecular basis of heredity is one of the various nuclei acids called the DNA :and it is
also responsible for the storage of any information required for structural formation in the
body, Luthi-Carter, R. (2000). A normal gene is a specific sequence of nucle(;tides n
DNA that is located in the germ plasma on a chromosome and it has three DN/IIX bases,

composed of the sequence of CAG called alleles, Frazin, N. et al (2004); Guesella, J.F. et

al (1983). A sequence of three consecutive nucleotides that is part of the genetic code that
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also specifies a particular amino acid in a protein, or, start or stops protein synthesis is
called a codon (or a triplet), Ji-Yeon, S. et al (2005); Margolis, R L. et al (2003).

Discovered in 1994, the function of HD protein huntingtin (htt) is sti]i not fully
understood. Human htt is a large protein containing 3144 amino acids, Tassicker, R.etal
(2003). The polyglutamine (polyQ) domain, which begins at the 18" amino acid position
usually contains 11-34 glutamine residue in unaffected individuals and expands to more
than 37 glutamines in HD patients Kopp, P. et al (1998), Shi-Hua, L. et al (2004);
Squitierri, F. et al (2003). In people with Hlj, mutation occurs causing the séquence of
the three DNA bases CAG to repeats itself abnormally dozens of times (in bi{ology and
medical sciences, mutation refers to changes in the genetic materials). Over tim%: and with
each successive generation, the number of CAG repeats may expand further. HD is
neither racial nor gender biased since it originates from the short arm of chromo%some 4,a
non-sex chromosome, each child of an HD parent has a 50-50 chance of inheriting the
HD gene. However, if a child does not inherit the HD gene, he or she will not de?velop the
disease and cannot pass it to subsequent generations. A person who inherits the }IIID gene,
and survives long enough, will sooner or later develop the disease. In some fanl}ilies, all
the children may inherit the HD gene; in others, none do. Whether one child inll:terits the
gene has no bearing on whether others will or will not share the same fate. Nevertheless,
a small number of cases of HD are sporadic, that is, they occur even though there is no
family history of the disorder. These cases are thought to be caused by a newl; genetic

mutation (i.c. an alteration in the gene that occurs during sperm development and that

brings the number of CAG repeats into the range that causes disease).
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2.2.2 Pathology of Huntington’s Disease

According to literature, gross pathology of HD is limited to the brain, George IHuntington
(1872), Jen-Zen, C. et al (2002); Ross, C.A. et al (1997); resulting in atrofphy of the
caudate, putamen, and cerebral cortex. The abnormal movements in Huntington’s disease
are believed to be caused by loss of most of the cell bodies of the GABA-secreting
neurons in the caudate nucleus and putamen and acetylcholine-secreting neurons in many |
parts of the brain. The axon terminals of the GABA neurons normally cause inhibition in
the globus pallidus and substantia nigra. This loss of inhibition is believed. to allow
spontaneous outbursts globus pallidus and 'substantia nigra activity that clausc the

distortional movements.

2.2.3 Diagnosis of Huntington’s Disease "‘

Diagnosis of HD is based on a thorough personal and family medical history, ijhysical
examination (which may include neurological examination), and a series of lanratory
tests. To aid diagnosis, the physician may require that patients supply comprehensive
information regarding recent changes in patients’ recent intellectual and/or er,riptional

function, which constitute signs of Huntington’s disease, Margolis, R.L. et al (2003).

At the onset, HD manifests with motor symptoms, and most times it is the initial
complaint of clumsiness with attendant tremor, balance trouble or jerkiness that r;nakes
patients to seek medical attention. The earliest symptoms includé choréa or
choreoathetosis, continuous and irregular writhing and jerking movement, most

prominently of the limbs and the trunk, Ross, C.A. et al (1997). Other symptoms may

16
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include respiratory, oral and nasal musculature to mention but a few. However, as the
disease progresses, the dementia becomes more global. It is worthy of mé;ntion that as
many as 80% of HD patients develop some form of non-cognitive psychie:lltric disorder
within 10 — 15 years of the onset of the disease, George Huntington, (2003):. Personality
changes often manifest as irritability and apathy in HD patient. But the péychological

manifestations of HD patients are often responsive to treatment.

2.3  Modeling

A model is an abstraction of real life action. It is a simple description of a s:,;stem, used
for explaining, calculating, projecting, planning or evaluating the system, I—Io;:jpensteadt,
F.C. et al (2002). Chi-Tsong, C. (1984) discussed the technicalities involved :jn solving
real-life problems using analytical methods. He highlighted for important components of
analytical methods to include, modeling, development of mathematical : equation
description, analysis, and design. He further claimed that the distinction betweeré physical
systems and models are basic in engineering. Modeling is a very important proinem since
the success of a design depends upon whether the physical system is properly modeled or
not. However, to develop a suitable model of a physical system, a thorough
understanding of the physical system and its behavior is essential, Nakano, E. et al
(1999). It should be noted here that every mathematical equation represent.ing the
behavioral pattern of a physical system is also covered by our definition of a molilziel and
generally in literature, models are used synonymously as mathematical equati:'ons. In
furtherance of analyses, another type of model is also considered in this study. This is the

artificial neural networks (ANN) model, which is of great importance to engineering

17
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analysis where simulation of a physical system is involved, in an area of study called
Artificial Intelligence, Williamson, M.M. et al (1998); Xu, Z-B et al (2004); Zhao, H.

(2004); Zhou, J. et al (2004).

Physical systems may be studied by empirical methods whereby various éignals are
applied to the physical system under consideration and its responses are measured, Zehr,
E.P. et al (2003). Based on experience, if the performance is not satisfactory, we adjust
some of its parameters or connect to it some compensator to improve its perfor‘_mance. It
is an established fact that this approach to problem solving has undoubtedly suclceeded in
designing many useful physical systems. More than often, the odds against émpirical
methods may be too overwhelming thus giving analytical methods an edge I‘Iover the
empirical techniques. For instance, empirical methods may become unsatisfactor? if

e The specification on the physical systems become very precise and stringent

o The physical systems become very complicated

e The physical systems become too expensive :

¢ The physical systems become too dangerous

to be experimented, to mention but a few. In such cases, analytical methods take

precedence over the empirical considerations.

2.3.1 Modeling in Huntington’s Disease
In the above analysis, we have categorized the symptoms of Huntington’s disease under

the following broad classes:

18
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¢ Physiological

e Psychological and.

» Psychiatric
To model therefore, we considered the three broad classes above, and using their features,
we concluded that it is the physiological features that can be modeled. The reasion for our
decision is not far fetched. The attraction to these features is the choreiform movements.
The rapid jerky motion of the entire body (the arm inclusive) of the patients of
Huntington’s disease (HD) is an outward symptom of HD exhibited by persons who

suffer from the disease. The basis of our analysis is the theory of motor control.

2.3.2 Motor Control
Brown, L.E. et al (2001) described motor control as the ability of biological and artificial
systems' to plan, initiate, maintain, monitor and correct movements to attain I?Jhysically
realizable goals. The nature of the action to be carried out is usually not fully determined
by specification of goal alone. One challenge for motor control research is to exb]ain how
one movement is chosen from the plethora that is possible; since there may be an infinite
number of movements that lead to the achievement of the set goal. This ledds to the
problem of redundancy which is present at all levels of the motor control system. The
redundancy problem can be approached by considering:

¢ Body positions while ignoring the forces behind them

* Body positions with the forces involved.

We have chosen the former in our study.

19
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Other challenges in motor control include:

o The learning problem as regards how to model relations between movements and

their effects. |

s Perceptual motor integration which involves the understanding of how feedback is

used to correct errors, and also how feed forward is used to prevent errors.

20
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CHAPTER THREE

METHODOLOGY

3.0 Preamble

This chapter contains an expository consideration of fundamental principles and theories
upon which the analytical build-up of models and their solutions contained therein are
based. In order to present a detailed analysis of the problem, we have divided the chapter
into three broad sections. Section A is a clear exposition of the basic physiological
considerations of the arm gait in Huntington's disease (HD) patients. It alsc;l contains
techniques for problem formulation and crisp modeling. Section B is based on the
seemingly short-coming of section A. It discusses the Artificial Neural Network (ANN)

modeling of the arm gait in Huntington’s disease patient as a viable representation of the

condition by back propagation using the Sigmund function, while Section C, and the last

b
1

section of the chapter deals with the modeling of the management of the aforementioned
physiological condition in HD and other related conditions in patients sufferilng from

other Neurodegenerative disease with similar traits.

A. PROBLEM FORMULATION AND MODELLING

Towards the end of eighteenth century, Luigi Galvani, a professor of Anatbmy at
Bologna University in Italy, published a book describing how a freshly dissected frog’s
leg could be thrown into muscular convulsions, simply by connecting the foot énd the

exposed nerves through a length of copper and iron wire. The recorded muscular

convulsion is as a result of movements of ions in the chemical materials (i.e.
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neurotransmitters) in the nerve cells of the fresh frog’s leg in accordance with;the polarity
of the ions, with the jons being attracted to various metals in accordance with their
positions in the electrochemical series. This discovery was what led to the invention of

the standard electrolytic cell, which culminated in the manufacture of a battery.

Spinal

Fig. 3.1 Galvani’s experiment with a frog’s leg

According to elementary science, the driving force in electrolytic cell has been e{ttributed
to the potential difference between two poles of the cell as demonstrated in the: Voltaic
cell. Basically a cell converts chemical energy to electrical energy with the resultant
effect that the chemical materials get gradually used up while the ceil is in action. A cell
has two unlike metal plates or poles, with chemicals between them. One pole,i‘,tcrmed

positive is at higher electrical potential than the other, called negative pole, so that when

connected by a wire there is flow of current from the positive to the negative pole. -
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Fig.3.2 A Simple Cell

3.1 The Equation of a Human Arm

It is well known that the first derivative of position (symbol x) with respect to time is

velocity (symbol v), while the second is acceleration (symbol a). It is however less well

known that the third derivative of position vedor is known as jerk (symbol j).: Jerk 15 a
I

vector but it may be used loosely as a scalar quantity because there is no separate term for

the magnitude of jerk analogous to speed for velocity. Jerk is therefore the rate 0f change

of acceleration with respect to time i.e. it is the first derivative of acceleration. Hence,

dx
= — ' 31
y=— | (3.1)
dv .
a=—-= 32
gt i( )
. da .
== ,(3.3)

Moreover, if a particle travels a distance s(2) as a function in circle (s may be t'hought of
I

as the arc length of the curve traced out by the particle). The speed is given by:

“- 22

But acceleration, the second derivative of position s(2) may be derived from the quotient

(34

rule as follows:
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Since the jerk in the arm of a HD patient resuits not from an electromotive force, but
from the difference in electrical potentials, then it must have resulted from the derivative
of the electromotive force. Qur analysis is therefore based on a function of the potential

difference which results from the electromotive force produced.

Susan Greenfield, (1999) offered an explanation in respect of distribution of ions on
either side of the membrane. At resting potential, the ions will flow one way or the other .
as a spontaneous process stemming from two forces:

» The tendency to equalize concentrations (a chemical or “diffusional” force); and

» The tendency to be attracted to an opposite, negative charge inside the neurdn (an

electrical force).

Because there is finite number of ions, this movement will not continue indeﬁnitelyl‘.: there
is a stage when thé concentration and charge of each particular ion is balanced on either
side of the membrane, and as a result, no net flux of ions occurs. There would be; a state
of dynamic equilibrium, like two individuals of equal weight on a seesaw tllllat was
perfectly motionless. The potential difference corresponding to this equal distriBution 18

given by the Nernst equation:

E= [Ejlnﬁ . (3.8)
nF C, .

The critical parameters in determining this value are: the concentration of ions b,':oth inside
C; and outside C, the neuron; and the absolute temperature, 7. In addition, three further,
non-changeable factors have to be taken into account: the charge on the ion m question,
#n; the Faraday constant, F, the magnitude of the charge per mole of electrons; and the

universal gas constant R.
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Flash and Hogan (1984) proposed a mathematical model, the minimum jerk model, that

simulates unconstrained point-to-point movements of the arm through a third specified

Fr
N

point. The model is based on the minimization of the rate of change of hand acceleration
in a fixed Cartesian coordinate system. The integration of the square of the derivative of

hand acceleration gives a function denoted by C which has to be minimized, as:

1 (@Y (@YY -'
0

where #/is the time needed to reach the final position.

Equation (3.9) matches observed human planar two-joint arm movements and implies

"
Lg
A

that trajectories are invariant under translation, rotation, time and amplitude scaling.

!

The basis for using optimization theory in the derivation of the mathematical modél is its
ability to describe ‘an assumed goal of the class of the movements in a relatively simple
formula; they thercafter derived a detailed prediction of the kinematics of a large number
of specific movements from the formula, Such a mathematical model also sucg.eeds n
accounting for the majority of the kinematical features of planar horizonta! arm
movements. The dynamic optimization technique requires:

o The definition of a criterion function which describes the objectiv_;.: of the

movement. |

|

¢ Formulation of a set of differential equations, which describes the response of the

system to its inputs.

ik
N
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¢ The application of the methods of variation calculus and optimal control theory to
find the trajectory which minimizes the criterion function subject to dynamic
constraints imposed by the system of differential equations and the algebraic

constraints imposed at the end points, or during the motion.

3.2  The Equation of the Arm Gait of a HD Patient
As brain cells become depleted in a Huntington’s disease (HD) patient, problems fnay
develop in the following three areas:

¢ Motor contro! (movement)

¢ Cognition (thinking), and

¢ Behavior
Chorea problems arise when the centers of motor or cognitive control are affecte;ci that
cause muscle weakness or discoordination in speech and swatlowing, and problems with
memory, sequencing, new learning ability, reasoning, and problem solving. Hunti@gton‘s
disease is an autosomal dominantly inherited progressive neurodegenerative dil'sorder.
The mutant gene has been localised to chromosome 4p16.3. The gene product huntingtin
is widely distributed in both neurons and extra-neuronal tissues. The mut#tion in
Huntington’s disease involves the expansion of a trinucleotide (CAG) repeat encoding
glutamine. The etiology of Huntington’s is yet unknown but increasing evidence ;uggests
tmportant role of altered gene transcription, mitochondrial dysfunction and excitcftoxicity.
The expanded polyglutamine stretch leads to a conformational change and abnormal

protein-protein interactions. Mutant huntingtin can bind to transcription factors, "resulting

28



in reduced levels of acetylated histones. One consequence of this appears to be a

decreased expression of genes which may play critical roles in neuronal survival.

Early motor signs of HD typically include the gradual onset of clumsiness, balaﬁce
difficulties, and brief, random, fidgeting movement. At first, chorea, - a moven_;ent
disorder characterized by frequent, irregular, purposeless, jerky motions - mayj be
incorporated into intentional actions, potentially masking symptoms and delaying
recognition of the condition. Early during the course of HD, chorea may be limited to the
fingers and toes. However, these movements become more noticeable over time and."may
extend to the arms, legs, face and trunk. Under certain circumstances, such as stress or a
highly emotional state, choreic movements may become widespread or generalized.
Movements essentially blend or flow into one another, causi-ng them to appear relatively
slow and writhing in nature (athetosis). In addition, involuntary movements may de;velop
a dystonic quality in which there may be unusual twisting motions and altemaﬁng or

fixed postures resulting from sustained muscle contractions.

Many HD patients develop a distinctive manner of walking (gait) that may be unsteady,
disjointed, or lurching. The gait has also been described as dance-like in nature.” As the
disease progresses, other findings may include:

o Clumsy fine motor movements

e Postural instability

e Inability to sustain certain voluntary movements

e Poor control of tongue and diaphragm

29
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» Difficulty swallowing (dysphagia)

¢ A strained, hoarse or inappropriately loud voice

Of concern in this work is the analysis and management of arm gait of HD patient. It is in
particular assumed that the jerky arm movement here is a point action exacerbated by the
pulse resulting from the action potential attained by the neurons in the arm. Usually, a

point action is described by Dirac delta function given by:

reé(x—a)dx:l anxe(a,g),0<5<<1 (3.10)

And from literature, it is possible to define the integral of the unit impulse function and

any continuous and bounded function £, thus

[ 8- a)flx)ax = lim—— [ fl)ax (_’3. 11)

0 Qe

By the mean value theorem of the integral calculus, there exists a real number 77 € [a,b]

such that;

[ 7(x)etx = )b —a) (3.12)

Combining (3.11) with (3.12), we have that;

[ 6(x- a)f ek =i~ £ (n)oe) 619

Hence, Eﬁ(x—a)f(x)dx =f(a) | (3.14)

However, chorea syndrome in HD is a coupled process. The coupling is between
electrical and mechanical systems resulting in an electromechanical system where an

electromotive force £ drives a mechanical system with an inertia (or mass). According to
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the Newton’s law of motion, the force F* required by the mechanical system to achieve
motion is given by:

F' = ma (3.15)
However, the force F' is not a mechanical force but rather an electromotive forcé:

E =ma (3.16)
Nevertheless, the motion that results is not a product of the electromotive force £ but the
change in potential E, thus:

dE  d
= a™

But m is constant for the period of motion, therefore:

ar = mE (3.17)
dt dt ‘.
Hence E=m fg dt (3.18)

Adopting the dynamic optimization theory based minimum jerk model of Flash and
Hogan as represented in equation (3.9), the chorea experienced by a HD patient in the

arm from point to point could be described by the model:

&xY (dy)
E=1im (—f] +(—§’J d (3.19)
s\ ar dt _

In equation (3.16), m is the mass of the mechanical structure driven by £ at time /, while
At stands for the infinitesimal time interval within which a jerk occurs in the arm of an
HD patient. It is pertinent to note that the motion under consideration had been created by

the difference of potential aggravated by the energy of chemical reaction which was

converted into electrical energy in the neuronal circuitry system of the body. The energy
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that drives a chemical process is called Gibb’s free energy. It will be recalled from
chemical engineering processes that for a chemical process to be feasible the Gibbs free
energy that drives the chemical process must be negative. It will be recalledll further from
literature that the Gibb’s free energy is given by:
G =nFE ;'. (3.20)

where E is the electromotive force due to the excitatory neurotransmitter, w';'lile nand F
are as carlier defined. We now relate equation (3.8) with equation (3.20) using entropy
and Gibbs free energy. To achieve this aim we first express all the quantities ixijvolved per
molecule so that Boltzmann’s constant & a;nd the electron charge e are used in lé?la'ce of the
gas constant R and the Faraday constant /. By definition, the entropy of a molecule 18
given by: |

S=klnQ - (321
where Q is the number of states available to the molecule. The number of s‘éates must
vary linearly with the volume V of the system, which is inversely proportioﬁal to the
concentration ¢, so we can also write the entropy as:

S =k In (constant ¢ x ¥} =- k In (constant f x ¢) 1 (3.22)

The change in entropy from some state / to another state 2 is therefore:

AS =S, -8, = —klne, - (~kIn¢,) = —kIn2 (3.23)
C

!
In electrochemical cell, the cell potential £ is the chemical potential available from redox

reaction:

E= e 629
where u. is the chemical potential, e is the electron charge and £ is related to Gibbs free

energy change AG only by a constant:
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A

AG = —neE

where n is the number of electrons transferred.

. 629
|
|

NOTE: there is a negative sign because a spontaneous reaction has a negatiive AG and a

positive E.
The Gibbs free energy is related to the entropy by:
G=H-TS

where H is the enthalpy and T is the absolute temperature of the system.

(3.26)

Using these relations, we can now express change in Gibbs free energy as follows:

AG = AH —TAS = AG, - kTIn <%

G
And the cell potential becomes:
: T
E=£ &
' ne

!
i
!
i

(3.28)

To convert molar quantities, we simply multiply the Boltzmann’s constant & and the

electron charge e by Avogadro’s number Ny, thus:

R=kN,and F =eN,

Hence: E=£K, —Elnc—2
nl’ ¢
. And at equilibrium E = ¢ wherefrom:
E =t e
nE g

To establish a relationship between E and the jerk j, it is important to

(3.29)

(3.30)

| (3.31)

note that the

magnitude of jerk produced is a function of the electromotive force producing it in
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accordance with equation (3.18). However, it is essential to establish the relationship

between F and the jerk produced.

According to Bymne, J.H. et al (1994), Dale and his colleagues in 1936 found that
electrical stimulation of motor axons led to an increase in the concentration of
acetylcholine (ACh). As a result of a nerve action potential that invades the ..presynaptic
terminal, ACh is released into the synaptic cleft. This acetylcholine diffuses across the
synaptic cleft and combines with receptors on the postjunctional membrane. The resultant
increase in Na® and K’ permeabilities depolarizes the postsynaptic membrane thus
triggering an action potential in the muscle cell. As noted by Byme, J.H. et z«ﬂ (1984), it is
also possible to achieve the same result by Ca®* hydrolysis as proposed by, Katz and his
colleagues. The action potential produced in the muscle cell ultimatelj;;f leads to an
impulse in the form of muscular contraction. The jerk produced depends on the
electromotive force produced by the EPSP. However, change of electromotive force is a
function of the magnitude of jerk produced. Choosing the jerk element as the incremental
factor therefore, we can generate the govering equation for the electrical impulse £.
Clearly, £ is maximum at maximum impact of jerk and tends to zero as.' jerk varnishes,
therefore given that a is the jerk element:

dE

- VE : (3.32))

We can set =1 without loss of generality, hence:

dE

kg ' 3.33
o (3.33)

= %E _' (3.34)
E |
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InjE| = a()+C (3.35)
E = e[a(.‘)+C]
E = Ae® " (3.36)

We define A=F, = E(lnC C,) and a is the jerk element. Substituting A in equation
nF

(3.36) above:

E =%1n(cq ]exp[a( ) 63D

Of primary interest is the part of our analysis that generates the jerk element, we hereafter

reverts to the jerk element in equation (3.9) to obtain our proposed equation, viz:

E= RT(lng—Jexp J‘li[da J +(d y) }dt | (3.38)
nFi{ C, ar’ dar

where all the parameters are as defined above in (3.8) capture the motion during resting

potential as well as during the irregular dance-like, jerky motion of the arm of an HD

patient. For instance, we recover Ey from equation (3.38) when jerk equals zero.

To justify equation (3.38) it is important to note the following facts:
e That the exponential function for £ results from equation (3.33) and as ultimately
expressed in equation (3.36);

e That E is maximum translates to maximum jerk at 1 =/,,

e That £ = E, (equilibrium potential) at final time ¢, when jerk is zero.

Thus, when a{1,)=0, E=E, but £ = E(t,) when a(t) is maximum. Now suppose:
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3.}2 3.\ I
a(t) =% ’1:(%} +[%J }dt , (3.3%)

It follows that:
"j B
E= Eln(—ci}xp[a(t i (3.40)
nf . ,. ,
RT (C " RT (C :
= E= Eln(—éﬂr}e [a(t) —Eln(é’}xp[a(t)i : (3.41)
RT (C,) RT (C
E==——In =% |-—In] = : 3.42
nF n( C, ) nF n( C, Jexp[a(t)# (3:42)
Or E=E, _RL,, &Jexp[a(to ] (3.43)
nF \C '

Since a(f;}) > 0, then exp[a(t f)J accounts for the AE that is responsible for the jerk. We

can therefore generalize equation (3.43) as follows:

E=E, - %m(?ﬂ (3.44)
n ; '

i

Notice that equation (3.44) is the general form of Nernst equation.

Georgopoulos, A.P. er al (1982) showed in their work that studies of two-joint arm
movements revealed that the variability in hand trajectories is reduced exﬁonentially with
time as a result of practice. Since with learning and practice movements tend to be
performed more smoothly and gracefully, this may indicate an underlying objective of
achieving the smoothest movement which carries the hand from one equilibrium position

to another, and this is what we hope to achieve at the end of this research effort. In our
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own case we have a recurrence of such movements, which could be assume to occur at

equal interval due to the reasons adduced in our analysis above. '

3.3 Solving the Equation of the Arm Gait of HD Patient
Equation (3.38) is an integral equation which is revertible into an ordinary differential

equation as follows: |

132 31V
E=£1n& expi s d—? +£—§i dt
nF\ C, ot ar dt

and w(t) = alt)x(r) (3.45)
where a(f) is a constant. i

Let 1, be the time taken for k-t jerk to take place, then T = et ol forms
an infinite sequence of time taken for successive jerks to make complete revolution; there
exists a corresponding real interval [, = (0,r,) for each f,. And by the following

definition of covering for a set:

Definition 3.1: Let F be a subset of R, a collection G of subsets of R is said to be a

covering for F (or G is said to cover F) if F C [U{Gi A EAr= G}] G is called an open
covering for F in case each G, € G is an open set. G is said to be a finite covering if &

! .
contains only a finite number of sets, say, G;, G2, G3, ... G, (Note that in the last
sentence we do not imply that the sets Gy are finite sets, i.e. we do not imply that G

consists only of a finite number of points).
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And by the Heine-Borel theorem:

Theorem 3.1 (Heine-Boi-eI Theorem): Let F be a closed and bounded subset of R. then

every open covering of F has a finite sub-covering.

{That is, whenever G is a collection of open sets such that /' < U{G,. :Gj € G}), there

T

exists a finite collection {G,}, of sets in G such that F (U G; |-}

i=l !
We can choose for all time f,, an open covering / = U]k =(0,¢) such that /, </ v
k

k=12,--, where t =sup/f, or simply put, ¢ = maxt,. Thus defining equation (3.38)
k [l

over [:

2 2
RT d’x d’y\
V=""AInCClexpit ||| -——| +|—| |df¢"
nF( 0 a) p{zj[[ dtil} (diﬁ ] 1 }
VF P (dyY |
= I cexpit || ] S s | (3.46)
RTInC,C, A ds’ ds -

1.} 3V |
= Inélr)= j[(%} +[%] a’s} : (3.47)




2 3 \2 3 \2 ; :
where §(t) = (”—VF—) and J(1) = [j—;) +[ZT§] is the jerk that emanated from

left hand side (L.H.S.) of (3.38). Clearly 3 an open sphere glt,x,y) such that a class
C(1,x,y) of solution of (3.38) exists in the open sphere go(t,x,y). !

However 3 two possible natures the R.H.S. of (3.38) could take, namely when:

2 2
d’ d’ :
e Jerk J() = —f + —{ = b, where b is a constant, and
| ds \ ds
|
d’x t d'y ’
o Jek JO)=|—| +|—5| = z(t)cosﬂr, i.e. L.H.S. i1s not a constant.
| ds \ ds” )

3 2 3 2
Case One: when J(t)=[—j—§} +(£i_yJ =b, is a constant? Equation (3.47) then
s i

ds’ |
becomes:
Ing(e)= [bas (3.48)
ie. In&(f) = wblt ~1,) (3.49)
RT 1 |
hence, V = —F(ln C,C r)exp{;a;@(t - to)} (3.50)
n

where @ is the angular velocity of the fluid element (i.e. the transmitter).
|

d* d* _
At t =1, let Ff“—- x& LaP y((]”,k =1,2,3. thus:

° 7 drt
xlt) = x, + xW+ X7 x84 (3.51)
and A1) = yo + W+ 3y + 00 - | (3.52)

&Y (& ’
Case Two: when J(f) = [F} + [__y] is not a constant? Equation (3.47) becomes:
s

ds*
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¢{t)= Iz(s)cosﬁs ds L (3.53)

3 2 3 2 .
Where ()= lnf(t) and J(f) =(fﬂf} +[%3Ji] = z{t)cos 1. The onus on us at this
s r

juncture is to find z(t). We introduce Fourier transforms techniques to find z(¥), in

accordance with the following theorem:

Theorem 3.2: Given that f{x) is piecewise continuous in every finife interval 1, and has a

right hand and a left hand derivative af every point x € I, and if the integral

[ |7(x}ex 5 (3.54)

exists, then f(x) can be represented by a Fourier integral. At a point of discontinuity of
fx) on I the value of the Fourier integral is equal to the average of the lefi- and right-

hand limits of f(x) at that point.

Clearly J(t) satisfies all the requirements in theorem (3.2) above. Let the L.H.S. of

3

equation (3.53) be:

(=)~ e

Then x(t)= \/z 'ﬂz] (r)sin wr + z, (r)cos wrldz (3.56)
T !

Applying Fourier Transform techniques,

40



¥

| x(w)= \/z Iz(a))cos wt dt (3.57)
70 .

Hence z(t) =, /2 jy(m)cos i dow '_ (3.58)
T
0

Since £(¢) and (3.51) defines z(t), we can express x{r) as a power series:

)= ap =a,+ar+ay’ +at’ +-- '_ (3.59)
=0 ) .

k

Z

where a; = 1 at 1 = 0. And by (3.45);

k! gtk
W)=Y bt =By +br+bft +bf + -_ (3.60)
i=0 .

To obtain an expression for a;, £ = 0,1,2,---, it will be recalled that the entire trajectory

depends on the initial excitation brought about by the action potential aggravated by the
potential difference, E, as generated by the difference in the concentratiorlll C,and C, of

® .
the fluid element respectively for the inside and outside the cell membrane. Therefore,

nVFE )
)= 20— EYS
<) H(Rﬂncoc,.] . ©6D

is constant, @ is maximum at ¢ =0 and (3.61) is zero at { =¢ r-As such, when time ¢ in

x(f) is normalized (3.59) may be expressed as Taylor series of both sine and cosine

functions as:
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rd

)

B

LN

bl |

z{r)=<¢(0 Z; J‘dw(%(cosa)s# } '. (3.62)
5 s=0 ‘ |

n=0""1 ¢

Since the integral and summation operators are both linear (3.62) may be express thus;

20 = g(0>{ i%%(cos msﬁszo Jda)} J, (3.63)

1 \n=0

2 4 6 '
£ H !
Hence, z(r)=g(0){ Ids[l—-(;? +(2 —(2 +H : (3.64)
W .
3,2 5.4 7,6 '
z(r)=g(0{a)—w3: +“’5f —“’7:' +} : (3.65)
: o
And, x(7) = \/: Idr z{@)cos of
"o
2% ot ot o't -
t)=]— |dicl0) & —— - — t (3.66
- X() \/;(.)[ g( {w 3 ¥ 5! 7 ¥ 91 closa) (3.66)

Integrating by parts, we obtain the following coefficientsa; ¥V k € N in (3.59). Hence,

N 4 6

a = g(tfkﬁ—ﬁ+ﬁ——“—9—!+---)wcoswr

42



h

of 2 4

= m s
( 4 6

a =) 353t
of & 6!

ay =50} 25~
6 8

as =sl) 557501

Therefore, for n even,

+j 2sina;t

4 -jw"‘ cos af

———-a-i----Ja)ﬂ'sina)t

6 8
27 20!
LR
301 30
gt 10!
491 411t
Jor_ 12
st Su3

+- “)(0 cosat

5

L k)
)=a" L2k 3.67
anlt)=o Smwf,;)( ) an+ 2k +1) (3.67)
And for n odd,
oo .
n =@ cosa)szzi)( ) n![n+2(k+])]! (3.68)

At this juncture, x(2) is evaluated at various values of ¢, @ given the values of V, C,, and

C,. The solution to the crisp model is represented graphically as follows:
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GRAPHICAL ANALYSIS OF ARM GAIT OF HD PATIENT
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Figure 3.3: The graph of ESPS against time for the Crisp Model [

Details containing the table of values and enlarged version of the gl'raph are as contained

in Appendix A-1.

B. ANN MODELLING OF THE ARM GAIT IN HD

Theoretical studies of motor control have proposed that the brain generates motor
commands as a consequence of computations that resemble control policies and internal

models. Control policies allow the brain to select goals and plans actions, while internal

models computes motor commands that are appropriate for those plans and monitor

1
1
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sensory feedback in order to update the plans. For instance, when the goals is to reach a
target, the motor system may evaluate the current state of the limb with respect to the
goal and use a control policy to plan a small change in hand positijon. It may use an
internal model of limb’s inverse dynamics called an inverse model, to convert the plan
into motor commands or the internal model of limb’s forward dynamics called a forward
model, to predict the sensory consequences of the motor commands: and compare this
prediction with sensory feedback to re-estimate current hand position ‘;-w_ith respect to the

goal and update the motor plan by issuing an error-dependent response aimed at

correcting the ongoing movement. |

34  The Arm Gait Mechanisms |

According to Smith, M.A. et al (2005), two different compensatory mechanisms are
engaged when the nervous system senses errors during a reaching mo:vement. The simple
control method therefore would be to generate corrective re-sponsesi proportional to the
sensed error. The significant delays that exist in the sensorimotor lodp would require the
gain of these responses to be quite small to maintain stability of the arm. These delays
may be effectively compensated if the motion state of the arm caq be predicted at the
time point when compensatory motor command would take effect. Such a predictor is
termed a forward model of dynamics. And it can be computationally implemented using
delayed sensory feedback, knowledge of the recent history of tI{e motor output and

knowledge of how the arm is likely to respond to this motor outf)ut. A good forward

model can reduce delay driven instability allowing high feedback gains and powerful
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corrective responses based on simple linear responses to error, but these responses may

not maximize the smoothness or efficiency of movement. !

Huntington’s disease patients become somewhat clumsy and may have trouble with fine
motor tasks such as tying shoelaces, buttoning clothing, or performing needlework. This
is largely due to a disturbance in error feedback control: errors in the early part of the
movement were poorly compensated by the motor commands in the remainder of the
movement. This suggested that one of the many computational méchanisms that are
involvgd in error feedback control was affected by damage to the basal ganglia. Errorin a
given movement not only requires a motor response during the samei movement, it also
requires a response in the subsequent movement: the error changes the inverse mode] that

is thought to be used by the brain to compute the motor commands that initiate the

subsequent movement.

3.5 Comparative Analyses of Crisp and ANN Models for the Arm Gait of
Huntington’s disease Patient |
In section A of this chapter, we proposed a crisp model for the arm éait of HD patients
and we provided an analytical solution which solves the proposed rﬁodcl. However, the
crisp model failed to capture the jerk in the arm of an HD patient; hence the need to
propose a new model. Specifically, the new model is proposed for the following reasons:
«  The Frobenius method is plagued by jump discontinuities.
» The solution is a parabolic smooth curve which misses putithe staccato nature

(jerk) of the arm gait of an HD patient; and
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« There is a need to look for a more realistic representation (model) of the

choreiform movement.
This takes us to the terrain of Artificial Neural Network (ANN) analysis "of the arm gait

of HD patient based on critical parameters in equation (3.8) above.

3.6  Methodology in Artificial Neural Network
In this section, we have discussed the procedural considerations for the neural networks
techniques for the prediction of the arm gait of the HD patient under the following
subheadings:

¢ Tuning the Network

e Data Preprocessing

e Training of the Network

e Data Deprocessing

The steps are considered in their order of application in the ANN algorithm.

3.6.1 Tuning Parameters for the Artificial Neural Network
This is the first step in this neural network analysis. It is essential to identify the set up
parameter for the network. Some parameters considered are:

¢ the number of hidden layers

o the size of hidden layers

o the learning constant, 3

e the momentum parameter, o

e the range, format and bias of data presented to the network
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s the form of the activation function (sigmoid is used here)

The output layer has a single unit, which is the expected change for the prediction
problem. One middle layer is used. It is best to choose the smallest number of neurons
possible for a given problem to allow for generalization. A major set back associated with
the use of too many neurons in exercise is problem of memorization of patterns that may
in turn exacerbate inefficiency of the neural network to effectiveiy carry out accurate

predictions outside the data in the training set.

3.6.2 Processing the ANN Data for the Arm Gait in HD

For the neural network to function the acquired raw data must be preprocessed. The
sigmoid activation function is used for data preprocessing in thisA‘thesis. The steps
involved in preprocessing of the raw data are: I

(a) Presenting a data which is a second derivative of the data set

d, =P

1 PJ \ (369)

where F, is the row matrix representing the data on level & of the Neural Net.

(b} The next stép is to normalize the data, viz:
=Gt # (3.70)

where u = mean and o = standard deviation

(c) In image processing edge can be detected by accenting change with the function

(a - Z;J , where a and b are adjacent pixel values.
a+

This enables feature detection and will be used to accent change in the data:
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£
&y

. P.,-P ‘
S‘- — i+1 i (371)
P, +F ‘

i+l

Therefore, all columns from the last (feature detection) procedure are appended with the

columns from the previous (squashing) procedure. This doubles the number of columns.

3.6.3 Training the ANN for the Arm Gait in HD

The network is trained using the back propagation algorithm. The weights are initialized

with random floating point numbers in the range [-1, 1] and the error function used is the

1 ,i(@ iy (3.72)
TYVS ‘

where T is the number of output units, 6 is the network output and ¢ is the desired target

mean square error defined as:

output. This error will be propagated backward for each training pattern and for each

epoch. The Back Propagation Algorithm used is as given above:

3.6.4 The Back Propagation Algorithm for the ANN Simulation
Step 1: Read first input pattern and associated output pattern
CONVERGE = TRUE ' (3.73)
Step 2: For input layer ~ assign as net input to each unit in its corresponding element in
the input vector. The output for each unit is the net input.

Step 3: For the first hidden layer units — calculate the net input and output

net; =W, +» x,W; (3.74)

i=]
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1+ exp(— netj)

O;

W, = initial weight values, x; = input vector and W = {Wﬂ.

Step 4: For the output layer units — calculate the net input and output.

net; = W, + Z“xiWij

i=l

. ]
o= 1+ exp(— netj)

(3.75)

}is the weight matrix.

(3.77)

(3.78)

Step 5: Is the difference between target and output pattern within tolerance? If No,

THEN CONVERGE = FALSE

Step 6: For each output unit calculate its error,

o, =(tj -O'j)d'j (I-O'j)

Step 7: For last hidden layer calculate error each unit

o, =0, (1 - O'J.)Zk: 5. W,

Repeat step 7 for all subsequent hidden layers.
Step 8: For all layers, update weights for each unit,
AW, (n+1)= ﬂ(éj of )+ aAW, (n)
(last pattern is presented) CONVERGE ~ TRUE

STOP

Read next input pattern and associated output pattern and GOTO step 2.

(3.79)

(3.80)

. (3.81)

(3.82)
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3.6.5 Training Data for the Artificial Neural Network ,
We have used the same data, in Appendix A-1, for the kinematic mode!l as well as the
artificial neural network model so as to have leverage between the analyltical model and

our ANN model.

The data set used for training is obtain for various angular velocities namely w/2, 7/3,
n/8,7/10.m/12,7/14 (210 data samples); and these data can be found in A;;pendix B. For
quick referencing ﬁgure A-2 in Appendix A contains the table of epoch .values and the
graph of crisp model versus ANN model. |

The data set used for testing and prediction is n/4, 7/6 (35 data sets for eachj.

The deprocessing is done by repeating the steps of the processing backwardé.

The parameters used for this prediction are for pi/4 prediction, |

Learning Rate: 0.0004 Error Tolerance: 0.0002

Number of cycles: 500 Architecture: 17 18 1

The parameters used for this prediction are for pi/6 prediction,

Learning Rate: 0.0002 Error Tolerance: 0.0002

Number of cycles: 500 Architecture: 17 18 1

The artificial neural network analysis was done based on the computer C++ pf;,ogramming
language. The C++ program from which the results were obtained was based on the
source data for the ANN as contained in the appendices attached. The primar:y data used
for the artificial neural analysis are the same set of data used for the Frobenius solution of

the crisp model.
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EXCITATORY POST-SYNAPTIC
POTENTIAL BUILD-UP

0.5

GRAPH OF CRISP MODEL VS ANN MODEL

N

—e— CRISP
—a— ANN

T 1 T T 7T

4 7

T 1 17777

1

1T 1 s 11117 7T

10 13 16 19 22 256 28 31 34

TIME IN MSEC
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for @ =%

52



-r_i -

3.6.6 ANN Analysis of the Arm Gait of Huntington’s Diseasc Patient

Having established the power and suitability of the Artificial Neural Network to describe
the arm gait of HD patient since it captures the staccato nature of the: jerk, we now go
ahead and train an Artificial Neural Network for the arm gait of HD patient relating the
sum/mean square errors of the training data vis-a-vis the test data using Stuttgart Neural

Networks Simulator (SNNS).

3.6.7 Summary of Data for the Training/Testing of the ANN
The following statistics have been obtained from the data used for the training of the
artificial neural network as well as the testing data. However a list of the sum square error

and the corresponding means square error at various epochs are as tabulated for a training

session with its graph.

TRAINING DATA TEST DATA
EPOCH SSE MSE SSE/O-UNITS SSE MSE SSE/O-UNITS
10 20.27844 | 0.00378 20.27844 20.35651 0.00380 20.35651
20 21.32877 | 0.00398 21.32877 21.09393 0.00393 21.09393
30 22.94093 | 0.00428 22.94003 22.58194 0.00421 22.58194
40 25.16621 0.00469 25.16621 23.79406 0.00444 23.79496
50 27.43690 | 0.00512 27.43690 26.10738 0.00487 26.10738
60 3067787 | 0.00572 30.67787 28.28762 0.00546 29.28762
70 36.23222 | 0.00657 35.23222 33.97247 0.00634 33.97247
80 43.22889 | 0.00806 43.22889 41.92018 0.00782 41.92018
90 61.74262 | 0.01152 61.74262 62.60379 0.01168 62.60379

Table 3.8: Comparative analysis of Sum Square Error, Mean Square Error of Training'Versus Test Data at
various epoch values during training session for the ANN using SNNS
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Figure 3.6: Graphical analysis of Sum Square Error, Mean Square Error of Training Versus Test Data at
various epoch values during the first training session for the ANN using SNNS.

3.6.8 Comments on Figures 3.6

For figure 3.6, we have used a 5-3-6-1 architecture with one input layer having five
nodes, two hidden layers having three and six nodes respectively and, one and only one
output node. The graphical iltustrations show that the discrepancies 'm all cases are within
the set error margin of 0.05. The training is best with Figure 3.6 we shall show in the
succeeding chapter that efficacy reduces as we continue with the training. This reveals
that further training of the ANN may result in‘overtraining. A tra;l,ining session of 400
epochs is shown in Appendix A-3 with the enlarged version of the graph of the ANN for

the comparative analysis of the Frobenius solution and the ANN method.
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C. MANAGEMENT OF HUNTINGTON’S DISEASE

In this section we have consolidated on the gains of our analyses in the previous chapters

to arrive at our ultimate gorf;l; the model for the management of Huntington’s disease.
I

However, 10 give an impetus to our proposed model, we shall first enumerate the existing

medical practices as regards neurodegenerative disease with clear emphasis on HD. To

manage Huntington’s disease, two broad approaches are used in practice. These are:

e Administration of drugs such as Tetrabenazine and Levetiracetam; and

¢ Electroconvulsive Therapy

3.7  Drug Administration in Huntington’s Disease

Evidence supporting the pharmacological management of chorea Iand the psychiatric
manifestations of Huntington’s disease is summarized below. ;Iiowever, adjuvant
psychotherapy, physiotherapy and speech therapy should be applied to provide optimal

;
management, Bevan, E. (20006).

3.7.1 Chorea
Choreiform movements occur in approximately 90 percent of patients. Chorea is most
promineﬁt in the early stages of diagnosis of the disease. These become more prominent
as the disease progresses. The first intervention in mild chorea sl;ould always be to
discontinue drugs that have the potential to exacerbate symptoms. Ihese drugs include
piracetam and dopamine agonists, such as:

¢ Levodopa

e Amantadine, and

e Cabergoline
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There are no published data pertaining to psychotropic drugs that can increase
dopaminergic neurotransmission, such as aripiprazole and venlafaxine. These drugs
should be considered as potential causes of exacerbations in dyskinetic movements and
their use is probably best avoided, at least as first-line treatments. Other movement
disorders include:

¢ Parkinson’s disease | i

¢ Alzheimer’s disease

¢ Disease of Cerebellum

s Epilepsy !

¢ Progressive Scierosis ;

¢ Contractions during child birth I

to mention but a few.

Choreiform movements are often more distressing for carers and health care-professionals
than they are for patients and it should not be assumed that interven_tioﬁ is always in a
patient’s best interest. If choreiform movements are problematic, the use of a small dose
of typical antipsychotic such as haloperido] is established clinical practice. There is
limited information available about the use of atypical antipsychotié for chorea. Two
open pilot studies used olanzapine Smg/day without success but a third open pilot study
reported significantly improved motor function. There are also anecdofal case reports to
suggest risperidone and quetiapine may be helpful. Several case reports suggest that
moderate doses of risperidone (6mg) are needed to have a signiﬁcanf[ effect on motor

disability. However, other case reports support lower doses (lmg; twice daily) of
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risperidone in the treatment of chorea. It is therefore, unclear if higher doses of atypical
antipsychotics may be required to achieve an optimal response in chorea, but these should

be considered if lower doses produce a suboptimal response.

Tetrabenazine, a dopamine-depleting drug, is effective in treating various stage of the
condition from moderate to severe choreiform movements. Efficacy is supported by
double-blind placebo-controlled crossover trials. However, up to 80 percent of patients
experience adverse effects, including sedation, insomnia, pseudo-Parkinsonism,
depression, anxiety and akathisia. According to literature, serious side effects may occur
in the course of the disease. These include: neuroleptic malignant syndrome and
dysphagia. And they may lead to death from aspiration pneumonia, having also been
reported. The decision to treat chorea with tetrabenazine must be balanced against the
added risk of developing Parkinsonism and depression, both of which are already
common in HD. Levetiracetam also records some benefit reducing choreiform
movements in a small short-term study. Hypo kinetic rigidity (decrease motor function
leading to stiffness) can occur independently of antipsychotic medication in patients with
HD. Treatment strategies are similar to those used in Parkinson’s disease although

patients with HD usually respond less well.

3.7.2 Psychosis
It is estimated that about 23 percent of patients with HD will develop psychotic syndrome

during the course of their illness. These tend to present early in the course of the illness

1

and ameliorate as cognitive function deteriorates. Early neuropathological changes
I
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include atrophy of the medial caudate. Neurotransmitter changes are c:omplcx but include
a reduction in gamma-aminobutyric acid and acetylcholine; anEd an increase In
glutamatergic activity. The net result appears to be a hyperdopaminergic state. It follows
that antipsychotic drugs are likely to be effective. Case reports and cdse series show the
benefit of individual agents but no randomized controlled trials have conducted.
|

The use of antipsychotic drugs in HD psychosis is complicated by the risk of
exacerbating the underlying movement disorder. Some evidence supports the efficacy of
typical antipsychotics, particularly haloperidol, when the HD is mild toi moderate. As the
disease progresses, typical antipsychotics tend to be poorly tolerated duie to dystonia and
Parkinsonism. Atypical antipsychotics tend to be used at this point although the evidence
to support their efficacy and tolerability is also limited to case reports an:d series. Meco ef
al compared risperidone with haloperidol in three patients with HD and found that
risperidone was comparable with haloperidol in two patients (and superijlor to haloperidol
in the other patient) in reducing both dyskinesia and psychotic symptoms; Additional case
reports support the efficacy of risperidone, quetiapine and am'insulpridé, although extra

pyramidal side effects can be problematic with all these drugs.

3.7.3 Depression
Depression is common in HD. Estimates of the point prevalence range from 9 to 63
percent but the true rate is probably between 40 and 50 percent. The suicide rate is four to

six times higher than in people without HD. Suicide among patients diaghosed with HD

tends to occur early in the course of illness. It has been suggested that this reflects the

58



prs

occurrence of suicide before motor skills decline to the point where the person is no

longer physically able to take his or her own life.

There are two randomized controlled trials to guide treatment choice, Bevan, E. et al
(2006). Case reports of successful treatment with tricyclic antidepressants (TCAs),
monoamine oxidase inhibitors (MAOQIs), mirtazepine, and selective serotomin reuptake
inhibitors (SSRIs) have been published. Patients with HD seem to be p%lrticularly prone to
the side effects that we commonly associated with the TCAs, namelyisedation, falls and
anticholinergic induced cognitive impairment. MAOQIs are also potentially problematic
because they can worsen neurotransmission. There has been almos} Nno new primary
literature in this area over the past 20 years. The use of SSRIs tends to be favoured
because these drugs may also reduce the irritability and apathy that are Ifcommonly seen in
HD. The choice of SSRIs is not affected by the patient having HD. j

E

|

3.7.4 Dementia I

Almost all patients with HD develop sub-cortical dementia. Patients in the later stage of
the disease tend to have profound dementia. No robust data could be found on the use of
cholinesterase inhibitors to treat dementia in HD. There are however, some data to
suggest that galantamine can be used to regulate mood and behaviour, thus improving
some of the psychotic features associated with HD. It is thought that this occurs through
allosteric modulation of nicotinic acetylcholine receptors. There is no reason to suspect
that the efficacy and tolerability of cholinesterase inhibitors would be any Idifferent in HD

patients than in those with Alzheimer’s disease, Bevan, E. et al (2006).
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Patients suffering from psychosis, depression and dementia are likely to be referred to
psychiatrist for advice and management. According to literature, some psychiatrisls see

enough cases to build up expertise in this area.

In summary, the literature consists entirely of case reports and case s;eries. Most are old
and treatment is largely empirical. According to Bevan and Paton, the;"e is poor evidence
on which to base decisions for the management of psychiatric symptolms in patients with
HD. However, w.ith the exception of tetrabenazine which is used to treat choreiform
movements, no placebo controlled or randomized controlled trials were identified.
Systematic studies are required before any definite conclusions can be drawn as to the
efficacy of various approaches. However, this is unlikely to happen owing to the small
number of patients diagnosed with HD. Clinicians who treat patients ‘iNith HD should be
encouraged to publish reports of both positive and negative outcomies to increase the

primary literature base in this neglected area of care.

3.8 The Way Qut

Electroconvulsive therapy seems to be well tolerated in HD patients. A notable exampie
of this application is the deep brain simulation device by Metrode Incorporation, UK.
Metrode Incorporation, a modest company with six employees made tEhe device in 2006.
It consists of an electrode that can be implanted in a patient’s brain, sending out electrical

impulses at programmed intervals to neutralize the unwanted excitafory post synaptic

potential which may precipitate the tremor that constitute a major phﬂfsical symptom of
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Parkinson’s disease. Several of such devices have been made in the U$ and other parts of

the developed world.

3.9 - The Design and Building of a Model for the Management Device
Hereafter, we considered the build-up of the model for the management of HD. This is
done in two stages. The first stage enumerates the mathematical consideration of the

physiological presentations in HD while the last delve in the model. [

3.9.1 The Design

According to literature, Huntington’s disease is known to be associated with writhe, twist,

constant uncontrollable dance-like motion of various parts of the affected persons. In our
model, the phrase “constant uncontrollable dance-like motion” implies that the jerk

occurs periodically.

A function f (x) is said to be periodic if it is defined for all real numbers x and if there is
some positive number p such that

S+ p)=flx) ’ (3.83)
The real number p is then called the period of f (x) The graph c;)f such functions 1s

obtained by periodic repetition of its graph in any interval p, Kreyzig, E. (1988). And by

extension, we have that:
F(2)= e+ p)= flte+ P+ pl = fx+2p) == [(x+np)  (3.84)

where # is a positive integer.
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In an HD fiee situation where both the excitatory and the inhibitory memories are
functional, the law of electroneutrality is obeyed where macroscopic (or bulk) portion of
physiological information in the neural circuit contains equal number opposite charges as
a result of the damping effect of the inhibitory post synaptic potential (IPSP) on the
precipitated ex‘citatory post synaptic potential (EPSP) in the system. However, in HD
patient two possibilities may have arisen:
1. itis not impossible that the memory of inhibitory activities is deleted, and/or
2. since HD results from mutant allele causing the CAG sequence to repeat itself
abnormally, the excessive polyglutamiﬁe generated by such a inutation may have
overwhelmed the IPSP produced resulting in the chorea conditipn
This condition is prevalent given the following reasons:
o CAG codes for glutamine
¢ Glutamine is a crystalline amino acid with the molecular formula CsH;¢N2O3
e Glutamine yields glutamic acid and ammonia on hydrolysis in accordance with
the chemical equation CsH;oN203+H20 — CsHoNO4 + NH;
¢  (CsHyoNO, is a neurotransmitter which excites postsynaptic neurons
In his work, Schaneggenburger, R. et al (2000} declared that action potential can be
attained as many times as possible in a second. It is therefore logical that if a patient is
confronted by any of the two (or both) situations as in equations (3.83) and (3.84) above,
choreiform movements may occur. Moreover, since the physiological condition is

constant, it clearly implies that the function f(¢) that describes the motion is periodic,

thus:

fO)=sft+nT) V¥V neN (3.85)
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where N is the set of natural numbers.

Let us consider a time interval [0,1 ] Suppose the incidence of jerk within the time

interval [0,7] isA, and then the time taken for single jerk to occur is 7 = % It is

pertinent to state at this juncture that even though the literature séys that the jerk is
constant, it is silent on the uniformity of the jerk. It is therefore imporéant that we assume
the general case where:

o the jerk occurs at constant intervals, but

e the jerk is NOT uniform
and design our model in such a way as to accommodate the two scenarios. Hence, if Vis
the volume of drugs (or better still the quantum of electrical impulse) required to dampen
the jerk then ¥ must be a function of the Gibbs free energy required td drive the chemical
process and by extension the electromotive force that results from the potential difference
created by the gap that was born out of the marriage between the egcess EPSP and the
shortfall in the supply of the IPSP, Margeta-Mitrovic (2000). This translates to the

following model.

3.9.2 The Model

Every model is aimed at achieving a set goal. The aim of our model is to neutralize the

effect of excitatory post synaptic potentials (EPSP} that precipitate tfhe chorea. In other
u

words, our objective is to create an equilibrium position between theEEPSP and the IPSP

thereby causing the law of electro-neutrality to hold, Byrne, J.H. (2000). To this end, it 1s
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enough to create an artificial IPSP just before threshold. To achieve this goal, we

therefore propose the model:

' (0 if 0<t<T—dt |

fw:{v if T-Ar<e<T ©.86)

Where V =V, E/E,; E is the potential for the jerk, Ey is the maximum possible potential

for the ailment, and ¥} is the constant volume of drug (or electrical influx) required to

neutralize the EPSP that culminated in the jerk.

Volume
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Figure 3.7: The graph of the Management Mode|

And the schematic diagram showing the flow of signals as predicted by the proposed

model in equation (3.86) is as follows:
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Figure 3.8; The Signal Flow diagram

Figure 3.8 represents a single electromechanical system consisting of electrical module
e (E) and mechanical module (M). However, for the purpose of our arjxa]ysis the system has
been decoupled in accordance with our earlier explanation in sé:ction 3.2. Since our
objective is to enable HD patients leave a life devoid of chorea, 01511' management model
works based on a pattern classifier (i.e. an ANN simulator) Whem the interactive
classifier monitors the build-up of the excitatory physiological information and kills the

build-up process prior to threshold. Our management technique is therefore a predictive

management as opposed to the conventional reactive management technique.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.0  Preamble

In this chapter, th.e results of both the crisp model and the Artificial Neural Network
(ANN) simulation highlighted in Chapter three are presented, analy#ed and discussed.
Tables containing data which size cannot be accommodated within a iaage are presented
in Appendix A for the perusal of user of this thesis. Section 4.1 contains the result of the
analysis of the crisp model presented in graphical form while Section 4.2 contains the
result of the artificial neural network simulation also in graphical; form. In order to
promote a better undersianding of the two methodical analyses, we have done a
comparative analysis of both the graph of the crisp model and that of the Artificial Neural
Network in a single Cartesian plane but in different colours so:as to remove any
ambiguity in our presentation. In Section 4.3 we have shown a sun,ﬂmean square error
analysis between the training and the test data. We do not have the juxury of presenting
the training data in fuil neither do we for the test data because each 'lof the two will gulp
between 500 and 750 pages. However, we have presented various values of both the
training and the test data at distinct epoch values and graphed them'. And we concluded

every Section with a concise but clear discussion of the results.

4.1  The Results for the Crisp Modeling
It will be recalled that the crisp model for the arm gait of Huntington’s disease patient

was defined as follows:



43

3V 30\ o
E=2L e lexpl2 [ 22] +[ 42 | ‘ 4.1)
nk o C, | “epldr dt :

where the critical parameters in determining this value are: the concentration of ions both

inside C; and outside C, the neuron; the absolute temperature, T; the charge on the ion in

question, »; the Faraday constant, F, the magnitude of the charge per mole of electrons;
I

and the universal gas constant R.

And the solution of the model expressed in power series was given as: .

x(t) = Za,.tf =a+at+at +at +-- (4.2)
i=0 '
k_
where a;, =—;d; at t=90
Fdt
Henceforth:
2% a)3t2 w5t4 (0716 a)gz‘s

x(t)=.— |dicl0) & - + - + — - lcosan 4.3
() \/;(! g( { 3! 5l 7! o1 (43)

which gave rise to the following coefficientsa; V & € N when integrated by parts:

= s S -1 RM 4.4
)= Smw{g%)( ) m(n+ 2k +1) | (44
for n even and
[v's] I
a, = " cosat Y (- 1)f (n-+2k+1) ‘ (4.5)
0

Z Alln+2(k +1)}

when # 1s odd.

The result was interpreted graphically and the graph is as displayed below:
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GRAPHICAL ANALYSIS OF ARM GAIT OF HDPATIENT
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Figure 4.1: The graph of EPSP against time for the Crisp Model

4.1.1 Discussion

Figure 4.1 is the solution of the crisp model. The figure clearly reveals that the Frobenius
solution of the crisp model is a parabolic smooth curve which agrees in totality with the
existing scholarly works especialty that of Flash and Hogan (ii985) experimental
evidence for the minimum jerk model, that simulates unconsméincd point-to-point
movements of the arm through a third specified point. The model which was based on the
minimization of the rate of change of hand acceleration in a fixed éartesian coordinate

system also has a parabolic smooth curve (that does not reflect a jerk motion) as solution.
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However, it is a ‘known fact that Science has now reached a stage in the field of
nanomedicine where in the near future nanorobots can be introduced into the body
system of a patient which will release drug at programmed intervals to curb an ailment. In
line with the purpose of our study therefore we require firm and impeccable platform for
this mechanism. This has been found to have been provided by ANN isimulation of the
arm gait of an HD patient since, for our purposes we require a solution \';vhich will capture
a point action in total agreement with the physiological presentation qlf the condition in
question if we must indeed propose a workable model that will adeﬁuately arrest the
choreiform movement that impedes day to day activities of an HD patignt. It is in light of

this fact that we forged ahead to propose an ANN simulation model an('i the results are as

discussed in the subsequent section.

4.2 The Results of the ANN Simulation !

In order that we may justify the necessity for the use of ANN simulatién we have done a
worthwhile comparison between the Frobenius solution and ANN simulation. To start
with, we have generated the source data for the Artificial Neural Network simulation
from the data set used for the crisp model, and for obvious reasons, ANN behaves well

|

with large volume of data. To this end, we have obtained the expanéied source data by
merging the same data set with its derived data through the algorithm presented in section
3.6. And for easy inference, we have embedded the graph of the ANN simulation on the

graph of the crisp model as shown in the following figure.
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Figure 4. 2: The graph of deprocessed NN Analysis of Arm gait of HD Patient us’ing sigmoid function
for a =% :

4.2.1 Discussion

In diagram 4.2, we have graphed the crisp model versus the ANN model in order that we
may carry-out a good comparative analysis of the two. The Frobenius solution for the
crisp model is outlined in blue while the pink line represents the ANN model. From the
figure it is clear that while the blue line is part of a parabolic smooth curve in figure 4.1,
the pink graph clearly brings out the staccato nature of the jerk. It .‘is therefore obvious

that the ANN graph is a better representation of the jerk of the arm of an HD patient.
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Since the crisp model gave rise to a parabolic smooth graph, it clearly misses out the
staccato nature (jerk) of the arm gait of an HD patient and therefore failed to capture the
jerk in the arm of an HD patient, hence the need to adopt the ANN model for the arm gait

in HD patient because it is a more realistic representation (model) of the actual movement

43  Analyzing the ANN Simulation of the Arm Gait of HD Patient

Having established the power and suitability of the Artificial Neural Network to describe
the arm gait of HD patient since it captures the staccato nature of the jerk, we now go
ahead and discuss the training/testing sessions of our Artificial Neural Network relating
the sum/mean square errors of the training data vis-a-vis the test data using Stuttgart

Neural Networks Simulator (SNNS).

4.3.1 Detailed Functions and Data Samples used for the Training of the ANN

The following statistics have been obtained from the data used for the training of the
artificial neural network as well as the testing data. However a list of tHe sum square error
and the corresponding means square error at various epochs are as tabulated for distinct

training sessions with their graphs.
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TRAINING DATA TEST DATA
EPOCH SSE MSE SSE/O-UNITS SSE MSE SSE/Q-UNITS
10 20.27844 | 0.00378 20.27844 20.35651 0.00380 20.35651
20 21.32877 | 0.00398 1 21.32877 21.09383 | 0.00393 21.09383
30 22.94093 | 0.00428 22.94093 2258184 | 0.00421 22.58194
40 25.16621 | 0.00469 25.16621 23.79496 | 0.00444 23.79496
50 27.43680 | 0.00512 27.43690 26.10738 | 0.00487 26.10738
60 30.67787 | 0.00572 30.67787 29.28762 | 0.00546 20.28762
70 35.23222 | 0.00857 35.23222 33.97247 | 0.00634 33.97247
80 43.22889 | 0.00806 43.22889 41.92018 | 0.00782 41.92018
20 61.74262 | 0.01152 61.74262 62.60379 | 0.01168 62.60379

Table 4.3: Comparative analysis of Sum Square Error, Mean Square Error of Training Versus Test Data at
various epoch values during training session for the ANN using SNNS '

1

SSE FOR TRAINING VS TEST DATA.
70 - -
g 60 /B___
50
w
40 j/
30
20 +—=
-
0 ; : ' . . ; .
1 2 3 4 5 8 7 8 9
EPOCH IN TENS

—e— TRAINING
—aTEST

Learning func: Std_Backpropagation
Update func: Topological_Order
Init. func: Randomize_Weights

Remap. func: None

Learning all

patterns:

epochs :90

parameter:
#o-units : 1

0.05000

#patterns: 5361 (total: 5361)

Figure 4.3: Graphical analysis of Sum Square Emor, Mean Square Error of Training Versus Test Data at
various epoch values during the first training session for the ANN using SNNS,
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TRAINING DATA TEST DATA
EPOCH SSE MSE SSE/O-UNITS SSE MSE SSE/Q-UNITS

10 13.77107 | 0.00257 13.77107 13.32772 | 0.00249 13.32772
20 13.25124 | 0.00247 13.25124 14.56657 | 0.00272 14.56657
30 14.55394 | 0.00271 14.55394 13.80332 | 0.00257 13.80332
40 16.01160 | 0.00280 15.01160 14.25410 | 0.00266 14.2541
50 15.58682 | 0.00291 15.58682 15,3598 0.00287 15.3598
60 16.04093 | 0.00298 16.04093 15.56503 0.0029 15.56503
70 17.02671 | 0.00318 17.02671 16.01175 | 0.00289 16.01175
80 17.61792 | 0.00329 17.61792 16.56122 | 0.00308 | 16.56122
90 18.38665 | 0.00343 18.38665 17.33072 | 0.00323 17.33072
100 18.90159 | 0.00353 18.90159 19.68319 | 0.00367 19.68319

Table 4.4: Comparative analysis of Sum Square Error, Mean Square Eror of Training Versus Test Data at
various epoch values during the second training session for the ANN using SNNS.
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Figure 4.4: Graphical analysis of Sum square error, Mean Square Error of Training Versus Test Data at
various epoch values during the second training session for the ANN using SNNS.

Leaming func: Std_Backpropagatio‘n

Update func: Topological_Order
Init. func: Randomize_Weights
Remap. func. None

Learning all

patterns:

epochs : 100

parameter: 0.05000

#o-units : 1

#patterns: 5361 (total: 5361)
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TRAINING DATA TEST PATA
EPOCH SSE MSE SSE/Q-UNITS SSE MSE. SSE/O-UNITS
10 11.19287 | 0.00209 11.19287 13.33786 | 0.00249 13.33786
20 11.44877 | 0.00214 11.44877 12.21618 | 0.00228 12.21618
30 11.94615 | 0.00223 11.94615 10.75449 | 0.00201 10.75449
40 12.15728 | 0.00227 12.15728 11.06835 | 0.00206 11.06835
50 12.05269 | 0.00225 12.05269 13.93886 0.0026 13.83886
60 12.27877 | 0.00229 12.27877 12.20879 | 0.00228 12.20879
70 12.75445 | 0.00238 12.75445 11.8591 0.00221 11.8591_
80 12.25608 | 0.00229 12.25608 12.16397 | 0.00227 12.16397
90 13.26925 | 0.00248 13.26925 12.35164 0.0023 12.35164
100 13.79329 | 0.00257 13.79329 12.62475 | 0.00235 12.62475

. I
Table 4.5: Comparative analysis of Sum square error, Mean Square Error of Training Versus Test Data at
various epoch values during the third training session for the ANN using SNNS.

SSE FOR TRAINING VS TEST DATA
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Figure 4.5: Graphical analysis of Sum Square Error, Mean Square Emor of Training Versus Test Data at
various epoch values during the third training session for the ANN using SNNS.

Learning func: Std_Backpropagation !
Update func: Topological_Order !
Init. func: Randomize_Weights
* Remap. func: None
Leaming all patterns:
epochs : 100
Parameter: 0.05000
#o-units : 1
#patterns: 5361 (total: 5361)
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TRAINING DATA TEST DATA
EPOCH SSE MSE SSE/O-UNITS SSE MSE SSE/O-UNITS

10 9.68830 0.00181 8.68830 8.84850 | 0.00165 8.84850
20 9.62162 0.00179 9.62162 9.15772 | 0.00171 9.15772
30 9.73212 0.00182 9.73212 9.91758 | 0.00185: 9.91758
40 10.26644 | 0.00192 10.26644 9.38853 | 0.00175 9.38853
50 10.37286 | 0.00193 10.37286 9.41039 | 0.00176 . 9.41039
60 10.22872 | 0.00191 10.22872 9.62538 | 0.00180 9.62538
70 10.31495 | 0.00182 10.31495 9.86351 | 0.00184 9.86351
80 10.72408 | 0.00200 10.72408 10.46962 | 0.00195 10.46962
90 10.85954 | 0.00203 10.85954 10.45353 | 0.00195 10.45353
100 11.03667 | 0.00206 11.03667 10.39531 | 0.00194 10.39531

Table 4.6: Comparative analysis of Sum Square Error, Mean Square Error of Training Versus Test Data at
various epoch values during the fourth training session for the ANN using SNNS.

SSE FOR TRAINING VS TEST DATA
12.00000 — —
g 10.00000 M
8.00000
6.00000 .| —e— TRAINING
' f ~a—TEST
4.00000 ‘
,,;, 2.00000
0.00000 T T . . . . . l .
1 2 3 4 5 6 7 8 o8 10
EPOCH IN TENS

Figure 4.6: Graphical analysis of Sum Square Ermor, Mean Square Emor of Training Versus Test Data at
various epoch values during the fourth training session for the ANN using SNNS.

Leaming func: Std_Backpropagation
Update func: Topelogical_Order
Init. func: Randomize_Weights
Remap. func: None
Leaming all patterns:

epochs : 100

parameter. 0.05000

#o-units : 1

#pattems: 5361 (total: 5361)
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4.3.2 Comments Based on Training/Test Figures ;o

For figures 4.3 to 4.6, we have used a 5-3-6-1 architecture with one input layer having
five inputs, two hidden layers having three and six inputs respectively. There is one and
only one output layer. The graphical illustrations show that the discrepénoies in all cases
are within the set error margin of 0.05. The training is best with Figure 4.3 while the
efficacy reduces as we move from Figure 4.3 to Figure 4.6. Further training of the ANN
may result in overtraining. A training session of 400 epochs is shown in Appendix A-3
with the enlarged version of the graph of the ANN for the comparative analysis of the

Frobenius solution and the ANN method.
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CHAPTER FIVE |
CONCLUSION

In this work, a major headway had been made concerning the modeling and management
of neurodegenerative diseases. Efforts have been geared towards manéging one of the
major physiological problems associated with such diseases; precisely the chorea in
Huntington’s disease (HD). To achieve this aim, we have made effort to capture the
staccato nature of jerk by simulating same with an Artificial Neural Network so that we
could proffer a workable model for the management of Huntington’s disease, and by
extension neurodegenerative diseases in general.
!

In trying to model the arm gait of HD patients, we have considered a kinematic analysis
of same by constructing an electro-mechanical model, arriving at series solution to our
crisp model. We based our deductions on the fact that arms move in c;ircles about the
joints among others. The graphical illustrations of our kinematic model revealed that the
entire analysis gave a parabolic smooth curve, an indication that the F robénius method of
solution for the crisp model is not a viable representation of the choreiform movement
that characterizes HD. As a result of the inadequacy of the aforementioneéj we proceeded
to propose a more tealistic representation of the jerk in question. The new solution
technique was ably demonstrated through an interactive Artificial Neural Network

(ANN) simulation.



The contributions to knowledge include a mathematical model which describes the arm
gait of an HD patient with a view to form a strong basis for the development of an

effective and efficient management mechanism for the ailment. .

5.1 Summary of Findings and Contributions to Knowledge '

In this section an attempt has been made to present the summary of out findings during
the course this study, and to highlight the areas of its possible contributié)n to knowledge
in a concise and precise manner. These are as highlighted in sections'5.1.1 and 5.1.2

above;

5.1.1 Summary of Findings
The following are the highlights of our findings during the course of our study:
e The Nernst equation and the minimum jerk model can be married to develop an

electro-mechanical model for the arm gait of an HD patient.

e The mathematical solution to the model based on Frobenius method failed to

L

capture the arm gait of HD

e The involuntary, dance-like movement of the arm of an HD patient can be
f

captured with ANN simulation.

5.1.2 Contributions to Knowledge
A number of new grounds have been broken in this research effort. Above is the

summary of our humble contributions to knowledge and engineering practice: the study

has indeed:
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1. brought to fore a new way of looking at HD -
2. established Artificial Neural Network (ANN) modeling as a viable representation

of motor function in HD

provided the mechanism for coupling the management of HD with ANN

|98 )

modeling

5.1.3 Contributions to Medical Practice .
Possible application of the study can readily be found in medical practices the world
over. This includes the application of the study to the management aﬁd treatment of
conditions with similar manifestation such as:

¢ Parkinson’s disease

e Alzheimer's disease |

o Disease of Cerebellum

o Epilepsy

e Childbirth conditions such as contractions during labour

To mention but a few

5.2 Conclusion of Research :

With the conclusion of this study, a major problem in the field of mec;iicine has been
identified, studied and analyzed. This is the chorea in the arm of a Huntington’s disease
patient for which we have proposed a model for its management based 0;1 an interactive
artificial neural network (ANN) simulation of the arm gait of the arm c;f Huntington’s

disease (HD) patient.
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5.3 Recommendations for Further Work

The following are our recommendations for further research effort in this'area of study:

¥ ,
~ o Fuzzy analysis of arm gait of HD patient (to enable us capture the progressive
nature/developmental stage of the onset of the disease)
o Identification and modeling of stochastic parameters in choreiform in HD
e Applications of the above to other discases with similar manifestation as HD
I

P
Lt
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TABLE A-1: The plot of displacement against time for the Crisp Model

Time () | o) sin(rt/4) A(0) A1) A(2) A(3) A(4) A(5) X(t)
0.0 [3.32143] 0.0000000 | 0.7238 [ 0.00000 | 0.000000 | 0.0000000 | 0.00000000 | 0.006000000 | 0.00000000
0.1 332143 | 0.078459279 | 0.7238 | 0.01651 | 0.000825 | 0.0000129 | 0.00000032 | 0.000000004 | 0.1931410]
0.2 [3.32143]0.156434828 | 0.7238 | 0.03302 | 0.003300 | 0.0001032 | 0.00000512 | 0.000000128 | 0.39500507
03 [3.32143 | 0.2334459 | 0.7238 | 0.04953 | 0.007425 | 0.0003483 | 0.00002592 | 0.000000972 | 0.60566821
0.4 [332143]0.309017693 | 0.7238 | 0.06604 | 0.013200 | 0.0008256 | 0.00008192 | 0.000004096 | 0.82516037
0.5 [332143]0.382684281 | 0.7238 [ 0.08255 | 0.020625 | 0.0016125 | 0.00020000 | 0.000012500 | 1.05345374
0.6 ]3.32143]0.453991482 | 0.7238 | 0.09906 | 0.029700 | 0.0027864 | 0.00041472 | 0.000031104 | 1.29044989
0.7 [3.32143 ] 0.5224997 | 0.7238 | 0.11557 | 0.040425 | 0.0044247 | 0.00076832 | 0.000067228 | 1.53596563
0.8 332143 ] 0.587786441 | 0.7238 | 0.13208 | 0.052800 | 0.0066048 | 0.00131072 | 0.000131072 | 1.78971755
0.9 ]3.32143 ] 0.649449305 | 0.7238 | 0.14859 | 0.066825 | 0.0094041 | 0.00209952 | 0.000236196 | 2.05130502
1.0 [3.32143 ] 0.70710808 | 0.7238 | 0.16510 | 0.082500 | 0.0129000 | 0.00320000 | 0.000400000 | 2.32019181
L1 ]332143 ] 0.760407278 | 0.7238 | 0.18161 | 0.099825 | 0.0171699 | 0.00468512 | 0.000644204 | 2.59568620
1.2 [3.32143] 0.80901829 | 0.7238 | 0.19812 | 0.118800 | 0.0222912 | 0.00663552 | 0000995328 | 2.87691970
1.3 1332143 ] 0.852641412 [ 0.7238 [ 0.21463 | 0.139425 | 0.0283413 | 0.00913952 | 0.001485172 | 3.16282450
1.4 1332143 0.891007692 | 0.7238 | 0.23114 | 0.161700 | 0.0353976 | 0.01229312 | 0.002151296 | 3.45210983
1.5 ]3.32143 ] 0.923880587 | 0.7238 | 0.24765 | 0.185625 | 0.0435375 | 0.01620000 | 0.003037500 | 3.74323744
1.6 |332143 ] 0.951057424 | 0.7238 | 0.26416 | 0.211200 | 0.0528384 | 0.02097152 | 0.004194304 | 4.03439660
1.7 1332143 [ 0972370649 { 0.7238 | 0.28067 | 0.238425 | 0.0633777 | 0.02672672 | 0.005679428 | 4.32347893
1.8 ]3.32143 | 0.987688858 | 0.7238 | 0.29718 | 0.267300 | 0.0752328 | 0.03359232 | 0.007558272 | 4.60805361
1.9 [332143 | 0.996917608 | 0.7238 [ 0.31369 | 0.297825 | 0.0884811 | 0.04170272 | 0.009904396 | 4.88534340
20 1332143 1.000000 { 0.7238 | 0.33020 | 0.330000 | 0.1032000 | 0.05120000 | 0.012800000 | 5.15220222
2.1 |3.32143]0.996917031 | 0.7238 | 034671 | 0.363825 | 0.1194669 | 0.06223392 | 0.016336404 | 5.40509480
22 |3.32143 ] 0.987687709 | 0.7238 | 0.36322 | 0.399300_|.0.1373592 | 0.07496192 | 0.020614528 | 5.64007933
23 332143 [0:972368934 | 0.7238 | 0.37973 | 0.436425 | 0.1569543 | 0.08954912 | 0.025745372 | 5.85279367
24 [3.32143]0.951055154 | 0.7238 | 0.39624 | 0.475200 | 0.1783296 | 0.10616832 | 0.031850496 | 6.03844615
2.5 [3.32143 | 0.923877775 | 0.7238 | 0.41275 | 0.515625 | 0.2015625 | 0.12500000 { 0.039062500 | 6.19181172
2.6 |3.32143 | 0.891004356 | 0.7238 | 0.42926 | 0.557700 | 0.2267304 | 0.14623232 | 0.047525504 | 6.30723432
2.7 [3.32143 [ 0.852637573 | 0.7238 | 0.44577 | 0.601425 | 0.2539107 { 0.17006112 | 0.057395628 | 6.37863643
2.8 [3.32143 [ 0.809013972 [ 0.7238 | 0.46228 | 0.646800 | 0.2831808 | 0.19668992 | 0.068841472 | 6.39953655
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o Ly
=
Time () | <(t) sin(at/4) A(0) A(l) A(2) A(3) A1) A(5) X(1)
2.9 3.32143 | 0.760402507 | 0.7238 | 0.47879 | 0.693825 0.3146181 0.22632992 | 0.082044596 6.36307558
3.0 3321434 0.707102885 | 0.7238 | 0.49530 § 0.742500 0.3483000 0.2592000 0.097200000 6.26205281
3.1 3.32143 | 0.649443719 | 0.7238 | 0.51181 | 0.792825 0.3843039 | 0.29552672 | 0.114516604 6.08897231
3.2 3.32143 | 0.587780498 | 0.7238 | 0.52832 | 0.844800 | 0.4227072 | 0.33554432 | (0.134217728 5.83610026
33 3.32143 | 0.522493397 | 0.7238 | 0.54483 | 0.898425 0.4635873 0.37949472 | 0.156541572 5.49553397
34 3.32143 | 0.453984936 | 0.7238 | 0.56134 | 0.953700 | 0.5070216 | 0.42762752 | 0.181741696 505928271
3.5 332143 | 0.382677494 | 0.7238 | 0.57785 | 1.010625 0.5530875 | 0.48020000 | 0.210087500 4.51936096
36 332143 1 0309010706 | 0.7238 | 0.59436 | 1.069200 0.6018624 | 0.53747712 | 0.241864704 3.86789389
3.7 3.32143 | 0.233438756 | 0.7238 | 0.61087 | 1.129425 | 0.6534237 | 0.59973152 | 0.277375828 3.09723526
3.8 3.32143 | 0.156427572 | 0.7238 | 0.62738 | 1.191300 j 0.7078488 | 0.66724352 | 0.316940672 2.20009725
39 332143 | 0.078451955 1 0.7238 | 0.64389 | 1.254825 0.7652151 0.74030112 | 0.360896796 1.16969199
4.0 3.32143 | -7.3464E-06 0.7238 | 0.66040 1.320000 | 0.8256000 | 0.81920000 | 0.409600000 -0.00011611

Table A-1 continued
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GRAPHICAL ANALYSIS OF ARM GAIT OF HD PATIENT
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Figure A-1: The graph of displacement against time for the Crisp Model
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EPOCH | CRISP ANN
0 0 0

10 0.154582 | -0.06304
20 0.308486 | -0.05758
30 0.461202 | 0.021569
40 0.612217 | 0.136378
50 | 0.761006 | 0.275615
60 0.907089 | 0.435387
70 | 1.049966 | 0.584056
80 1.189172 | 0.735779
80 1.324243 | 0.891097
100 1.45474 | 1.047544
110 1.580243 | 1.204307
120 | 1.700331 | 1.357654
130 1.814628 | 1.508385
140 1.922773 | 1.654963
L. 150 2,024421 |- 1.795944
160 2.119241 | 1.930563
170 | 2.206961 | 2.058157
180 2.287297 | 2.177237
190 2.360008 | 2.287022
200 2.424899 | 2.386293
210 2.481789 | 2.473638
220 2.530528 | 2.548048
230 2.571012 | 2.607585
240 2.603179 | 2.650445
250 2.626985 | 2.67428
260 2.64243 | 2.67565
270 2.649559 | 2.649545
280 2.648462 | 2.590686
290 2.639275 | 2.709225
300 2.622163 | 3.239446
310 2.597351 | 3.34505
320 2.565126 | 3.363036
330 2.525803 | 3.223094

GRAPH OF CRISP MODEL VS ANN MODEL
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FIGURE A-2: Comparative studies of Crisp versus ANN models in the representation of arm gait of HD patlent
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TRAINING DATA TEST DATA
EPOCH SSE MSE SSE/O-UNITS SSE MSE SSE/Q-UNITS

10 0.68830 | 0.00181 8.68830 8.84850 | 0.00165 |  8.84850

20 9.62162 | 0.00179 9.62162 9.15772 | 0.00171 9.15772

30 9.73212 | 0.00182 8.73212 9.91758 | 0.00185 9.91758

40 10.26644 | 0.00192 10.26644 0.38853 | 0.00175 9.38853

50 10.37286 | 0.00193 10.37286 041039 | 0.00176 9.4103%

&0 10.22872 | 0.00191 10.22872 962538 | 0.00180 9.62538

70 10.31495 | 0.00192 10.31495 9.86351 | 0.00184 0.86351

80 10.72408 | 0.00200 10.72408 10.46962 | 0.00195 10.46962
g0 10.85954 | 0.00203 10.85954 10.45353 | 0.00185 10.45353
106 11.03667 | 0.00206 11.03667 10.39531 | 0.00194 10.38531
110 11.19287 | 0.00209 11.19287 13.33786 | 0.00248 13.33786
120 11.44877 | 0.00214 11.44877 12.21618 | 0.00228 12.21618
130 11.94615 | 0.00223 11.94615 10.75449 | 0.00201 10.75449
140 12.15728 | 0.00227 12.15728 11.06835 | 0.00206 11.06835
150 12.05269 | 0.00225 12.05269 13.93886 | 0.0026 13.93886
160 12.27877 | 0.00229 12.27877 12.20879 | 0.00228 12.20879
170 12.75445 | 0.00238 12.75445 11.8501 | 0.00221% 11.8591

180 12.25608 | 0.00229 12.25608 12.16397 | 0.00227 12.16397
180 13.26925 | 0.00248 13.26925 12.35164 | 0.0023 12.35164
200 13.79329 | 0.00257 13.79329 12.62475 | 0.00235 12.62475
210 13.77107 | 0.00257 13.77107 13.32772 | 0.00249 13.32772
220 13.25124 | 0.00247 13.25124 14.56657 | 0.00272 14.66657
230 14.55394 | 0.00271 14.55394 13.80332 | 0.00257 13.80332
240 15.01160 | 0.06280 15.01160 14.25410 | 0.00266 14.2541

250 15.58682 | 0.00291 15.58682 15.3598 | 0.00287 15.3598

260 16.04093 | 0.00299 16.04093 15.565503 | 0.0029 15.565503
270 17.02671 | 0.00318 17.02671 16.01175 | 0.00299 16.01175
280 1761792 | 0.00329 17.61792 16.56122 | 0.00309 16.56122
290 18.38665 | 0.00343 18.38665 17.33072 | 0.00323 _17.33072
300 18.90159 | 0.00353 18.90158 19.68319 | 0.00367 19.68319
310 20.27844 | 0.00378 20.27844 20.35651 | 0.00380 20.35651
320 21.32877 | 0.00398 21.32877 21.09393 | 0.00393 21.09393
330 2294093 | 0.00428 22.94093 22.58194 | 0.00421 ., 22.58194
340 2516621 | 0.00469 25.16621 23.79496 | 0.00444  23.79496
350 2743690 | 0.00512 . 27.43690 26.10738 | 0.00487 26.10738
360 30.67787 | 0.00572 30.67787 20.28762 | 0.00546 29.28762
370 3523222 | 0.00657 36.23222 33.97247 | 0.00634 - 33.97247
380 4322889 | 0.00808 43.22889 41.92018 | 0.00782 - 41.92018
390 61.74262 | 0.01152 . 61.74262 62.60379 | 0.01168 62.60379

TABLE A-3: Comparative analysis of Sum square error, Mean Square Error of Training data versus
Test Data at various epoch values for the training of the ANN using Stuttgart Neural

Networks Simulator (SNNS).
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Figure A-3: Graphical analysis of Sum Square Error of Training data versus Test Data at various epoch values for the training session for the ANN

using SNNS.
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APPENDIX B

0.0000000 | 1.0000000 0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000
0.1564348 | 0.9876883 | 0.3760773 | 0.08508 0.01661 0.00016 3.2E-07 0.00000 | 0.47793297
0,3090177 | 0.9510563 | 0.7428943 | 0.16384 0.06564 0.00126 5.12E-06 0.00000 | 0.97364847
0.4539915 | 0.8910060 | 1.0914187 | 0.23025 0.14465 0.00400 2.592E-05 0.00003 1.47036547
0.5877864 | 0.8080161 | 1.4130686 [ 0.27875 0.24970 0.00860 8.192E-05 0.00013 | 1.95032757
0.7071081 | 0.7071055 | 1.6999239 | 0.30454 0.37549 0.01468 | 0.00020000 | 0.00040 | 2.39523045
0.8090183 | 05877835 | 1.9449213 | 0.30378 0.51553 0.02108 0.0004147 0.00093 | 2.78671638
0.8910077 | 0.4539882 | 2.142028 0.27374 0.66240 0.02586 0.0007683 0.00214 | 3.10693070
0.9510574 | 0.3090142 [ 2.2863906 | 0.2129%4 0.80805 0.02627 0.0013107 0.00416 | 3.33913110
0.9876889 | 0.1564312 | 2.3744544 | 0.12127 0.94407 0.01894 0.0020985 0.00750 | 3.46833611
1 0.0000037 | 2.404051 6.00000 1.06204 0.00000 | 0.00320000 | 0.01271 | 3.48199479
0.9876877 | 0.1564385 | 2.3744517 | -0.14823 1.15386 -0.03458 0.0046851 0.02046__]_3.37065592
0.9510552 | 0.3090212 | 2.2863851 | -0.31942 1.21207 -0.08868 0.0066355 0.03162; | 3.12861153
0.8910044 | 0.4539948 | 2.1420199 | -0.50838 1.23017 -0.16564 0.0091395 0.04717 | 2.75448724
0.809014 | 0.5877894 | 1.9449109 | -0.70883 1.20289 -0.26784 0.0122931 0.06833 | 2.25175038
0.7071029 | 0.7071107 | 1.6999114 | -0.91363 1.12646 -0.39631 | 0.01620000 | 0.09648 | 1.62910666
0.5877805 | 0.8090204 | 1.4130543 | -1.11499 0.99880 -0.55030 0.0208715 0.13323 0.90075740
0.4539849 | 0.8910094 } 1.091403 -1.30474 0.81966 -0.72695 0.0267267 0.18040 . | 0.08649142
0.3090107 | 0.9510586 | 0.7428775 | -1.47460 0.59073 -0.92109 0.0335923 0.24008 .| 0.78840900
0.1564276 | 0.9876894 | 0.3760599 | -1.61647 0.31565 -1.12502 0.0417027 0.31460 | 1.69347007
- -1.766E- ' -

-0.000007 | 1.0000000 05 -1.72275 -0.00002 -1.32852 | 0.05120000 | 0.40657 | 259353064
0.1564421 { 0.9876871 | 0.3760948 | -1.78662 -0.34891 -1.51899 0.0622339 0.51890 | 3.44947671
0.3090247 | 0.9510540 | 0.7429111 } -1.80227 | -0.72203 -1.68171 0.0749619 0.65479 | 4.21917466
-0.453998 | 0.8810027 | 1.0914344 | -1.76522 -1.10898 -1.80028 0.0895491 0.81777 | 4.85860365
0.5877924 | 0.8090118 [ 1.4130829 | -1.67247 -1.49822 -1.85723 0.1061683 1.01168 | 5.32315801
0.7071133 | 0.7071003 [ 1.6999364 | -1.52270 -1.87746 -1.83476 | 0.12500000 | 1.24077 | 5.56908738
0.8090226 | 0.5877775 | 1.9449316 | -1.31637 -2.23396 -1.71558 0.1462323 1.50958 | 5.55503298
-0.891011 | 0.4539817 | -2.142036 | -1.05583 -2.55499 -1.48391 0.1700611 1.82309 | 5.24361121
0.9510597 | 0.3090072 | -2.286396 | -0.74528 -2.82818 -1.12647 0.1966899 2.18665 | 4.60298902
-0.98769 | 0.1564239 | 2.3744572 | -0.38075 -3.042014 -0.63354 0.2263299 260603 |.3.60839146
-1 (.0000110 | -2.404051 0.00003 -3.18613 0.00005 0.2592000 3.08742 | 224347859
0.9876866 | 0.1564457 | 2.3744489 | 0.41775 -3.25179 0.77397 0.2955267 3.63746 | 0.50152876
0.8510529 | 0.3090282 | 2.2863797 | 0.85181 -3.23219 1.68181 0.3355443 4.26324 | 161363286
-0.891001 | 0.4540013 | 2.1420119 | 1.29052 -3.12273 2,70942 0.3794947 4.97232 | 4.08701758
0.8090097 | 0.5877954 | 1.5449005 [ 1.72146 -2.82129 | 3.83655 0.4276275 577277 | 6.89221833
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r()_.000(.}000 1.0000000 0 ©.00000 0.00000 £.00000 0.00000 0,00000 | 0.00000000
0.0784593 | 0.9969173 0.1886201 0.04294 0'00104—‘ 0.00002 3.2E-07 0.00000 | 0.23261878
0.1564348 | 0.9876883 0.3760773 | 0.08508 0.00415 0.00016 5.12E-06 0.00000 | 0.46547724
0.2334459 | 09723698 05612159 | 0.12564 0.00930 0.00054 2.692E-05 0.00000 | 069672156
0.2090177 | 0.9510563 0.7428943 | 0.16384 0.01641 0.00126 8.192E-05 0.00000 | 0.92449680
0.3826843 | 0.9238792 0.0199925 | ©.19895 0.02540 0.00240 | 0.00020000 0.00001 1.14695585
0.4539915 | 0.8910060 } 1 .091478_?’.—| 0.23025 0.03616 0.00400 0.0004147 0.00003 | 1.36226871
0.5224997 | 0.8526395 12661159 | 025706 0.04856 0.00807 0.0007683 0.00007 | 1.56863222
0.5877864 | 0.8090161 1.4130686 | 0.27875 0.06243 0.00860 0.0013107 0.00013 | 1.76428019
0.6494493 | 0.7604049 15613093 | 0.29475 0.07760 0.01151 0.0020995 0.00023 | 1.94749396
0.7071081 | 0.7071055 1.6999239 | 0.30454 0.09387 0.01468 | 0.00320000 0.00040 | 2.11661350
0.7604073 | 0.6484465 1.8280579 | 0.30768 0.11104 0.01794 0.0046851 0.00064 | 2.27004883
0.8000183 | 0.5877835 | 1 9449213 | 0.30378 0.12888 0.02108 0.0066355 0.00099 | 2.40629202
0.8526414 | 0.5224965 2.0497935 0.29254 0.14715 0.02383 0.0091395 0.00147 | 2.52392943
0.8910077 | 0.4539882 2.142028 0.27374 0.16560 0.02586 0.0122931 0.00214 | 262165447
0.9238806 | 0.3826808 2.2210561 0.24722 0.18388 0.02681 0.01620000 |_0.00302 ._ 2.69828050
0.9510574 | 0.3090142 22863906 | 0.21294 0.20201 0.02627 0.0209715 0.00416 | 2.75275409
0.9723706 | 0.2334423 23376287 | 0.17092 0.21945 0.02381 0.0267267 0.00564 | 2.78416830
0.9876889 | 0.1564312 23744544 | 012127 0.23602 0.01894 0.0335923 0.00750 | 279177609
0.0969176 | 0.0784556 23966408 | 0.06420 0.25146 0.01117 0.0417027 0.00983 ‘:2.77500359

1.000000 | 0.0000037 2.404051 0.00000 0.26551 0.00000 | 0.05120000 0.01271 | 273346322

0.096917 | 0.0784629 23966394 | -0.07097 0.27793 -0.01508 0.0622339 0.01622 | 2.666965639

0.0876877 | 0.1564385 23744517 | -0.14823 0.28847 | -0.03458 0.0749619 0.02046 | 2.57553583

0.9723689 | 0.2334495 2,337624ﬂ -0.23125 0.20690 -0.05896 0.0895491 0.02556 | 2.45941717

0.9510552 | 0.3090212 22863851 | -0.31942 0.30302 .0.08868 | 0.1061683 0.03162 | 2.31908978

0.9238778 | 0.3826877 2.2210493J 40.41205 {.30662 .0.12442 | 0.12500000 0.03877 | 2.15527664

0.8910044 | 0.4539948 21420199 | -0.50838 0.30754 .0.16564 | 01462323 0.04717 | 1.96885301

0.8526376 | D.5225028 20497842 | -0.60760 0.30562 -0.21349 £.1700611 0.05697 | 1.76135390
0.06833 | 1.53397994

0.809014 | 0.5877894 ¢9449109 -0.70883 0.30072 -0.26784 0.1966899

0.7604025 | 0.64894521 1.8280464 | -0.81116 0.29275 -0.32880 0.2263299 0.08144 1 1.28860167

0.7071029 | 0.7074107 16999114 | -0.91363 0.28161 -0.39631“ 0.2592000 0.00648 | 1.02726201

(0.6494437 0.7604097 | 1.5612958 -1.01525 0.26727 -0.47024 0.2955267 0.11367 | 0.75227677

0.24970 -0.55030 0.3355443 0.13323 0.46623304

0.5877805 | 0.8090204 14130543 | -1.11499

0.5224934 | 0.8526433 12561008 | -1.21184 0.22890 0.3794947 0.15539 | 017198537

0.4539849 | 0.8910094 1.091403 -1.30474 0.20491 072605 | 04276275 0.18040 | 0.12735044
0.0000000 | 1.00060000 ¢ 0.00000 0.00000 0.00000 0.00000 0.00000 | 0.00000000
0.0523361 | ©.9986295 0.1258186 | 0.02867 0.00021 1 0.00001 3.2E-07 0.00000 | 0.15470413
0.1045287 | 0.9945219 0.2542923 | 0.05711 0.00082 0.00005 5.12E-086 .0.00000 | 0.30827927

0.1564348 | 0.9876883 0.3760773 | 0.08508 0.00185% _ 0.00016 2.592E-05 0.00000 0.46319054
0.2079122 | 0.9781475 | 0.489831 51 041234 0.00327 0.00038 8.192E-05 0.00000 0.‘61 591069
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0.2588196 | 0.9659257 | 0.6222156 | 0.13867 | 0.00509 0.00074 | 0.00020000 | ©0.00000 | 0.76692115
0.3090177 | 0.8510563 | 0.7428943 | 0.16384 0.00729 0.00126 0.0004147 0.00000 [ 0.91571322
0.3583687 | 0.9335801 | 0.8615368 | 0.18764 0.00987 0.00197 0.0007683 0.00001 1.06178915
0.4067375 | 0.9135451 | 0.9778178 | 0.20984 0.01280 0.00288 0.0013107 0.00002 1.20466335
0.4539915 | 0.8910060 | 1.0914187 | 0.23025 0.01607 0.00400 0.0020995 0.00003 1.34386359
0.5000011 | 0.8660248 | 1.2020281 |! 0.24866 0.01967 0.00533 | 0.00320000 | 0.00005 | 1.47893220
05446402 | 0.8386698 | 1.3093428 | 0.26488 0.02357 0.00687 0.004685t 0.00008 | 160942732
0.5877864 | 0.8090161 | 1.4130686 | 0.27875 0.02774 0.00860 0.0066355 0.00013 | 1.73482421
0.6293216 ) 0.7771450 | 1.5129213 | 0.25008 0.03218 0.01050 0.0081395 0.00019 | 1.85501653
0.6691319 | 0.7431437 | 1.6086272 | 0.29873 0.03685 0.01254 0.0122931 0.00028 | 1.96931768
0.7071081 | 0.7071055 | 1.6999239 | 0.30454 (.04172 0.01468 | 0.01620000 | 0.00040 | 2.07746221
0.7431461 ) 0.6691292 | 1.7865612 | 0.30740 0.04677 0.01686 0.0209715 0.00055 | 2.17910716
0.7771473 | 0.6293188 | 1.8683017 | 0.30718 0.05197 0.01902 0.0267267 0.00074 | 2.27393357
0.8090183 | 0.5877835 | 1.9449213 | 0.30378 0.05728 0.02108 00335923 0.00099 | 2.36164786
0.8386718 | 0.5446371 | 2.0162098 | 0.29712 0.06268 0.022%8 0.0417027 0.0.01 29 [ 2.44188338
0.866027 | 0.4999979 | 2.0819722 | 0.28712 0.06813 0.02460 | 0.05120000 | 0.00167 | 2.51470188
0.8910077 | 0.4539882 | 2.142028 0.27374 - 0.07360 0.02586 0.0622339 0.00214 | 2.57959508
0.9135466 | 0.4067342 | 2.1962125 | 0.25692 0.07906 0.02664 0.0749619 0.00268 | 2.63648616
0.9335814 | 0.3583653 | 2.2443774 | 0.23666 0.08446 0.02682 0.08954%91 0.00337 | 268523140
0.9510574 | 0.3090142 | 2.2863906 | 0.21294 0.08978 0.02627 0.1061683 0.00416 | 272572166
0.9659266 | 0.2588161 | 2.3221369 | 0.18578 0.09499 0.02487 | 0.12500000 0.00511 2.75788405
0.0781483 | 0.2079086 | 2.3515183 | 0.15521 0.10004 0.02248 0.1462323 0.00621 2.78168343
0.98765889 | 0.1564312 | 2.3744544 | 012127 0.10490 0.01894 0.1700611 0.00.750 2.79712400
0.9945223 | 0.1045251 | 2.3908823 | 0.08403 0.10953 0.01411 0.1966899 0.00900 | 2.80425085
0.5986297 | 0.0523324 | 2.4007568 | 0.04358 0.11391 0.00785 0.2263299 0.01072 ] 2.80315149

1 0.0000037 [ 2.404051 0.00000 0.11800 0.00000 0.2592000 0.01271 2.79395737
0.9986293 | 0.0523397 | 2.4007559 | -0.0465% 012177 -0.00959 0.2955267 0.01497 | 2.77684530
0.9945215 | 0.1045324 | 2.3908804 | -0.09604 0.12518 -0.02107 0.3355443 0.01754 [ 2.75203890
0.9876877 | 0.1564385 | 2.3744517 | -0.14823 0.12821 -0.03458 0.3794947 0.02046 | 2.71980995
0.9781467 | 0.2079158 | 2.3515147 | -0.20297 0.13082 -0.05026 0.4276275 0.02376 | 2.68047972
0.000000G | 1.0000000 0 0.00000 0.00000 0.00000 0.00000 0.00000 | 0.00000000
0.0392599 [ 0.9992290 | 0.0943828 | 0.02152 0.00007 0.90000 3.2E-07 0.00000 | 0.11596870
0.0784593 | 0.9969173 | 0.1886201 0.04294 0.00026 0.00002 5.12E-06 0.00000 | 0.23184239
0.1175377 | 0.9930684 | 0.2825666 | 0.06416 0.00059 0.00007 2.592E-05 0.00000 | 0.34740267
0.1564348 | 0.9876883 | 0.3760773 | 0.08508 0.00104 0.00016 8.192E-05 0. OOOOb 0.462438N1
0.1950908 | 0.9807852 | 0.4580082 | 0.10560 0.00162 0.00032 | 0.00020000 0.00000 | 0.57674856
0.2334459 | 0.9723698 | 0.5612159 | 0.12564 0.00232 0.00054 0.0004147 0.00000 | 0.69013735
0.2714411 | 0.9624551 | 0.6525582 | ©.14508 0.00315 0.00086 0.0007683 0.00000 | 0.80241960
0.3090177 | 0.9510563 | 07428943 | 0.16384 0.00410 0.00126 0.0013107 0.00006 0.91341848
0.3461178 | 0.9381910 | 0.8320849 | C.18183 0.00517 | 0.00177 0.0020995 0.00001 | 1.02296626
0.3826843 | 0.9238792 | 0.9199925 | 0.19895 0.00635 0.00240 | 0.00320000 | 0.000G1 | 1.13090459
0.4186607 | 0.6081428 | 1.0064816 | ©0.21512 0.00764 0.00314 0.0046851 0.00002° | 1.23708479
0.4539915 | 0.8910060 | 1.0914187 | 0.23025 0.00804 0.00400 0.0066355 0.00003° | 1.34136812
0.4886223 | 0.8724954 | 1.1746729 | 0.24425 0.01054 0.00457 0.0091395 0.00005" | 1.44362606
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0.5224997 | 0.8526395 0.25706 | 0.01214 | 0.00607 { 0.0122931 | 0.00007 | 1.54374062
0.5555714 | 0.8314688 | 1.3356219 | 0.26858 | 0.01383 | 0.00728 | 0.01620000 | 0.00009 | 1.64160460
05877864 | 0.8090161 | 1.4130686 | 027875 | 001561 | 0.00850 | 0.0208715 | 0.00013 | 1.73712194
0.6190952 | 0.7853160 | 1.4883364 | 0.28749 | 0.01746 | 0.01001 | 0.0267267 | 0.00018 | 1.83020796
0.6494493 | 0.7604049 | 1.5613093 | 0.29475 | 0.01940 | 0.01151 | 0.0335823 | 0.00023 | 1.92078974
0.678802 | 0.7343213 | 1.6318747 | 0.30045 | 002140 | 0.01307 ! 0.0417027 | 0.00031 | 2.00880635
0.707108 | 0.7071055 | 1.6999239 | 0.30454 | 0.02347 | 0.01468 { 0.05120000 | 0.00040 | 2.09420926
0.7343238 | 0.6787993 | 1.7653519 | 0.30697 | 0.02559 | 0.01631 | 0.0622339 | 0.00051 | 2.17696259
0.7604073 | 0.6494465 | 1.8280579 | 0.30768 | 0.02776 | 0.01794 | 0.0749619 | 0.00084 | 2.25704348
0.7853182 | 0.6190923 | 1.8879451 | 0.30663 | 0.02997 { 0.01955 | 0.0895491 | 0.00080 | 2.33444240
0.8090183 | 0.5877835 | 1.9449213 | 0.30378 | 0.03222 { 0.02108 | 0.1061683 | 0.00089 | 2.40916352
0.8314709 | 0.5555683 | 1.9988984 |. 0.29910 | 0.03449 | 0.02252 | 0.12500000 | 0:00121 | 2.48122501
0.8526414 | 0.5224965 | 2.0497935 |- 0.20254 | 0.03679 | 0.02383 | 0.1462323 | 0.00147 | 2.55065941
0.8724972 | 0.4886191 | 2.0975278 | 0.28410 | 003909 | 0.02496 | 0.170061% | 0.00178 | 2.61751397
0.8910077 | 0.4539882 | 2.142028 | 027374 | 004140 | 0.02586 | 0.1966899 | 0.00214 | 2.68185101
0.9081443 | 0.4186573 | 2.1832252 | 0.26145 [ 0.04370 | 0.02649 | 0.2263299 | 0.00254 | 2.74374826
0.9238806 | 0.3826809 | 2.2210561 | 0.24722 | 0.04599 | 0.02681 | 0.2692000 | 0.00302 | 2.80329924
0.9381923 | 0.3461144 | 2.2554622 | 023105 | 004826 | 002675 | 0.29565267 | 000355 | 2.86061359
0.9510574 | 0.3090142 | 2.2863906 | 0.21294 | 0.05050 | 0.02627 | 0.3355443 | 0.00416 | 2.91581743
0.962456% | 0.2714375 | 2.3137935 | 0.19289 | 0.05271 | 0.02531 | 0.3794947 | 0.00486 | 2.96905376
0.9723706 | 0.2334423 | 2.3376287 | 0.17092 | 0.05486 | 0.02381 | 0.4276275 | 0.00564 | 3.02048276
0.0000000 | 1.0000000 | . © 0.00000 | ©.00000 | 0.00000 0.00000 0.00000 | 0.00000000
0.0314108 | 0.9995066 | 0.0755132 | 0.01722 | 0.00003 | 0.00000 3.2E-07 0.00000 | 0.09276061
0.0627907 | 0.9980267 | 0.150952 | 0.03439 | 0.00011 | 0.00001 5.12E-06 | 0.00000 | 0.18546147
0.0941085 | 0.9955619 ! 0.2262417 | 0.05145 | 0.00024 | 0.00004 | 2.592E-05 { 0.00000 | 0.27799646
0.1253335 | 0.9921147 | 0.3013082 | 0.06837 | 0.00043 | 0.00008 | 8.192E-05 | 0.00000 [ 0.37026721
0.1564348 | 0.9876883 | 0.3760773 | 0.08508 | 0.00066 | 0.00016 | 0.00020000 ! 0.00000 | 0.46218318
0.1873817 | 0.9822872 | 0.4504753 | 0.10153 | 0.00096 | 0.00028 | 0.0004147 | 0.00000 | 0.55366173
0.2181437 | 0.9759166 | 05244287 | 0.11769 | 0.00130 | 0.00044 | 0.0007683 | 0.00000 | 0.54462825
0.2486905 | 0.9685830 | 0.5978645 | 0.13349 | 0.00169 | 0.00066 | 0.0013107 | 0.00000 [ 0.73501616
0.2789917 | 0.9602935 | 0.6707104 | 0.14889 | 0.00213 | 0.00093 | 0.0020995 | 0.00000 | 0.82476709
0.3090177 | 0.9510563 | 0.7428943 | 0.16384 | 0.00263 | 0.00126 { 0.00320000 { ©0.00000 | 0.91383091
0.3387387 | 0.9408805 | 0.8143451 | 017830 | 0.00317 | 000166 | 0.0046851 | 0.00001 | 1.00216584
0,3681254 | 0.9297762 | 0.8849922 | 0.19221 | 000375 | 0.00213 | 0.0066355 | 0.00001 | 1.08973853
0.3971488 | 0.9177542 | 0.9547659 | 0.20554 | 0.00439 | 0.00268 | 0.0091395 | 0.00002 | 1.17652415
0.4257802 | 09048266 | 1.0235974 | 021823 | 0.00506 | 0.00330 | 00122931 | 000002 | 1.25250649
0.4539915 | 0.8910060 | 1.0914187 | 0.23025 | 0.00579 | 0.00400 | 0.01620000 | 0.00003 | 1.34767803
0.4817547 | 0.8763061 | 1.1581629 | 0.24155 | 0.00655 | 0.00477 | 0.0209715 | 0.00004 | 1.43204007
0.5090425 | 0.8507414 | 1.2237641 | 0.25208 | 0.00735 | 0.00562 | 0.0267267 | 0.00006 | 1.51560278
0.5358279 | 0.8443272 | 1.2881576 | 0.26182 | 0.00819 | 0.00854 | 0.0335923 | 0.00008 | 1.59838534
0.5620845 | 0.8270798 { 1.3512798 | 0.27072 | 0.00807 | 0.00754 | 0.0417027 | 0.00010 | 1.68041598
0.587786 | 0.8090161 | 1.4130686 | 0.27875 | 0.00999 | 0.00860 | 0.05120000 | 0.00013 | 176173213
0.6129083 | 0.7901541 | 1.4734628 | 0.28586 | 0.01094 | 0.00972 | 0.0622339 | 0.00017 | 1.84238051
06374252 | 0.7705122 | 1.5324028 | 0.29203 | 0.01191 | 0.01090 | 0.0749619 | 0.00021 | 1.92241720
0.6613131 | 0.7501100 } 1.5898305 | 0.29722 | 0.01292 | 0.01212 | 0.0895491 | 0.00026 | 2.00190776
0.6845484 | 0.7289674 | 1.6456893 | 0.30140 | 0.01396 | 0.01339 | 0.1081683 | 0.00032 | 2.08092733
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0.00040

0.7071081 | 0.7071055 | 1.6899239 | 0.30454 0.01502 0.01468 | 0.12500000 2.15856075
0.7289699 | 0.6845457 | 1.7524808 | 0.30662 0.01610 0.01598 0.1462323 0.00048 | 2.23790263
0.7501124 | 0.6613104 | 1.8033084 | 0.30760 0.01721 0.01729 0.1700611 0.00058 | 2.31605750
0.7705146 | 0.6374224 | 1.8523563 | 0.30747 0.01833 0.01859 0.1966899 0.00070_ | 2.39413987
0.7901563 | 0.6129054 { 1.8995761 0.30621 0.01947 0.01586 0.2263299 0.00083 | 2.47227437
0.8090183 | 0.5877835 | 1.9449213 | 0.30378 0.02062 0.02108 0.2582000 0.00099 | 2.55059585
0.8270819 | 0.5620815 | 1.988347 0.30018 0.02178 0.62225 0.28955267 0.00116 | 2.62924949
0.8443292 | 0.5358248 | 2.0298105 | 0.29539 0.02286 0.02333 0.3355443 0.00i 36 | 2.70839091
0.8607433 | 0.5090393 | 2.0692707 | 0.2893% 0.02413 0.02430 0.3794947 0.00159 | 2.78818629
0.8763079 | 0.4817515 | 2.1066889 [ 0.28218 0.02531 0.02516 0.4276275 0.00185 | 2.86881246
0.0000000 | 1.0000000 0 0.00000 0.00000 0.00000 0.00Q00 0.00000 | 0.00000000

0.026177 | 0.9996573 | 0.0629309 | 0.01435 0.00001 (.00000 3.2E-07 0.00000 | 0.07729618
0.0523361 | 0.9986295 | 0.1258186 | 0.02867 0.00005 0.00001 5.12E-06 0.00f:JOO_ 0.15455454
0.0784593 | 0.9969173 | 0.1886201 0.04294 0.00012 0.00002 2.592E-05 0.00000 | 0.23171852
0.1045287 | 0.9945219 | 0.2512923 | 0.05711 0.00021 0.00005 8.192E-05 0.00000 | 0.30873932
0.1305265 | 0.9914448 | 0.3137924 | 0.07117 0.00032 0.00010 | 0.00020000 | 0.00000 | 0.38557586
0.1564348 | 0.9876883 | 0.3760773 | 0.08508 0.00046 0.00016 0.0004147 0.00000 | 0.46219484
0.1822359 | 0.9832548 | 0.4381045 | 0.09881 0.00063 0.00026 0.0007683 0.00000 | 0.53857077
0.2079122 | 0.9781475 | 0.4998315 | 0.11234 0.00082 0.00039 0.0013107 0.00000 | 0.61468602
0.2334459 | 0.97236598 | 0.5612159 | 0.12564 0.00103 0.00054 0.0020995 0.00000 | 0.69053085
0.2588196 | 0.9659257 | 0.6222156 | 0.13867 0.00127 0.00074 | 0.00320000 | 0.00000 | Q76610341

0.284016 | 0.9588195 | 0.6827889 | 0.15142 0.00154 0.00098 0.0046851 0.00000 | 0.84140982
0.3090177 | 0.9510563 | 0.7428943 | 0.16384 0.00182 0.00126 0.0066355 0.00000 | 0.91646419
0.3338076 | 0.9426412 | 0.8024905 | 0.17593 0.60213 0.00159 0.0091395 0.00001 0.99128863
0.3583687 | 0.9335801 | 0.8615368 | 0.18764 0.00247 0.00197 0.0122931 0.00004 1.06591334
0.3826841 | 0.9238792 | 0.8199925 | 0.19885 0.00282 0.00240 [ 0.01620000 | 0.00001 1.14037658
0.4067375 | 0.9135451 | 0.9778178 | 0.20984 0.00320 0.00288 0.0209715 0.00002 [ 1.21472476
0.430512 | 0.9025848 | 1.0349720 | 0.22028 0.00360 0.00341 0.0267267 0.00002 | 1.28901246
0.4539915 | 0.8910060 | 1.0914187 | 0.23025 0.00402 0.00400 0.0335923 0.00003. | 1.36330244
0.4771598 | 0.8788166 | 1.1471165 | 0.23571 0.00446 0.00463 0.0417027 0.00004 | 1.43766572
0.500001 [ 0.8660248 | 1.2020281 0.24866 0.00492 0.00533 | 0.05120000 | 0.00005 | 1.51218158
0.5224997 | 0.8526395 | 1.2561159 | 0.25706 0.00540 0.00607 0.0622339 0.00007 | 1.58693764
0.5446402 | 0.8386698 | 1.3093428 | 0.26488 0.00589 0.00687 0.0749619 0.00008. | 1.66202985
0.5664074 | 0.8241254 | 1.3616723 | 0.27212 0.00641 0.00771 0.0895491 0.00011 1.73756256
0.5877864 | 0.8090161 | 1.4130686 | 0.27875 0.00694 0.00860 0.1061683 0.00013 1.81364855
0.6087626 | 0.7933524 | 1.4634965 | 0.28474 0.00748 0.00953 | 0.12500000 | 0.00016 | 1.89040907
0.6293216 | 0.7771450 § 1.5128213 [ 0.29008 0.00805 0.01050 (.1462323 0.00019 | 1.96797389
0.6494493 | 0.7604049 | 1.5613093 | 0.29475 0.00862 0.01151 0.1700611 0.00023. | 2.04648131
0.6691319 | 0.7431437 | 1.6086272 [ 0.29873 0.00921 0.01254 0.1966889 0.00028 | 2.12607824
0.6883558 | 0.7253731 1 1.6548426 | 0.30200 0.00982 0.01360 0.2263299 0.00034 | 2.20692021
0.7071081 | 0.7071055 | 1.6999239 | 0.30454 0.01043 0.01468 0.2592000 0.00040 | 2.28917143
0.7253757 { 0.6883532 | 1.7438401 0.30635 0.01106 0.01577 0.2955267 0.00047 | 2.37300483
0.7431461 | 0.6691292 | 1.7865612 | 0.30740 0.01169 0.01686 0.3355443 0.00055 | 2.45860208
0.7604073 | 0.6494465 | 1.8280579 | 0.30768 0.01234 0.01754 0.3794947 0.00064 | 2.54615365
0.7771473 | 0.6293188 | 1.8683017 | 0.30718 0.01299 0.01902 0.4276275 000074 | 2.63585889
0.0000000 | 1.0000000 0 0.00000 0.00000 0.00000 0.00000 0.00000 | 0.00000000
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0.0196337 | 0.9998072 [ 0.0472005 [ 0.01077 0.00000 0.00000 3.2E-07 0.00000 | 0.05797036
0.0392599 | 0.9992290 | 0.0943828 | 0.02152 0.00002 0.00000 5.12E-06 0.00000 | 0.11592463
0.0588709 | 0.9582655 | 0.1415287 | 0.03225 0.00004 0.00001 2.592E-05 0.00000 | 0.17384564
0.0784593 | 0.9968173 | 0.1886201 0.04294 0.00007 0.00002 8.192E-05 0.00000 | 0.23172389
0.0980174 | 0.9951847 | 0.2356388 | 0.05358 0.00010 0.00004 | 0.00020000 | 0.00000 | 0.28955758
0.1175377 | 0.9930684 | 0.2825666 | 0.06416 0.00015 0.00007 0.0004147 0.00000l 0.34735261
01370127 | 0.9905693 | 0.3293854 | 0.07466 0.00020 0.00011 0.0007683 0.00000 | 0.40512261
0.1564348 | 0.9876883 | 0.3760773 | 0.08508 0.00026 0.00016 0.0013107 0.00000 | 0.46288893
0.1757967 | 0.9844265 | 0.4226242 | 0.09540 | 0.00033 0.00023 0.0020995 0.00000 | 0.52068063
0.1950908 | 0.9807852 | 0.4690082 | 0.10560 0.00040 0.00032 | 0.00326000 | ©.00000 | 0.57853453
0.2143096 | 0.9767658 | 0.5152113 | 0.11569 0.00049 0.00042 0.0046851 0.00000 | 0.63649518
0.2334459 | 0.9723698 | 0.5612159 | 0.12564 0.00058 0.00054 0.00668355 0.00000 | 0.69461490
0.2524922 4 0.9675589 | 0.607004 0.13544 0.00068 0.00069 0.0091395 0.00000 | 075295375
0.2714411 | 0.9624551 | 0.6525582 | 0.14508 0.00079 0.00086 0.0122931 0.00000 : 0.81157959
0.2902853 | 0.9569401 | 0.6978608 | 0.15455 0.00090 0.00105 | 0.01620000 | 0.00000 | 0.87056804
0.3090177 | 0.9510563 | 0.7428943 | 0.16384 0.00103 0.00126 0.0209715 (.00000 | 0.93000251
0.3276309 | 0.0448058 | 0.7876414 | 0.17204 0.00116 0.00151 0.0267267 0.00001 0.98997419
0.3461178 [ 0.9381910 | 0.8320849 | 0.18183 0.00129 0.00177 0.0335923 0.00001 1.05058212
0.3644713 [ 0.9312146 | 0.8762076 | 0.19051 0.00144 0.00207 0.0417027 0.00001 1.11193310
0.382684 | 0.9238792 | 0.9199925 | 0.19895 0.00159 0.00240 | 0.05120000 | 0.00001 1.17414178
0.4007497 | 0.9161876 | 0.9634228 | 0.20716 0.00175 0.00275 0.0622339 0.00002 | 1.23733063
0.4186607 | 0.9081428 | 1.0064816 | 0.21512 0.00191 0.00314 0.0749619 0.00002 [ 1.30162956
0.4364102 | 0.8997478 | 1.0491524 | 0.22282 0.00208 0.00355 0.0895491 0.00002 | 1.36717794
0.4535915 | 0.8910060 | 1.0914187 | 0.23025 0.00226 0.00400 0.1061683 0.00003 1.43412057
0.4713977 | 0.8819207 | 1.1332642 | 0.23740 0.00244 0.00447 | 0.12500000 | 0.00004 1.50261173
0.4886223 | 0.8724954 | 1.1746729 | 0.24425 0.00264 0.00487 0.1462323 0.00005 | 1.57281317
0.5056584 | 0.8627338 [ 1.2156287 | 0.25081 0.00283 0.00551 0.1700611 0.00006 | 1.64489453
0.5224997 | 0.8526395 | 1.2561159 | 0.25706 0.00303 0.00607 0.1966899 0.00007 1.71903332
0.5391394 | 0.8422165 | 1.2961187 | 0.26298 0.00324 0.00666 0.2263299 0.00008 | 1.79541496
0.5555714 | 0.8314688 ! 1.3356219 | 0.26858 0.00346 0.00728 0.2592000 0.00009 | 1.87423280
0.5717891 | 0.8204006 | 1.3746102 | 0.27384 0.00368 0.00793 0.2955267 0.00011 1.95568808
0.5877864 | 0.8090161 [ 14130686 | 0.27875 0.00390 0.00860Q 0.3355443 0.00013 | 2.03998998
0.6035572 | 0.7973197 § 1.4509822 | 0.28330 0.00413 0.00929 0.3794947 0.00015 | 2.12735561
0.6190952 | 0.7853160 | 1.4883364 | 0.28749 0.00437 0.01001 0.4276275 0.00018 | 2.24801003
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#define TRAINING_FILE "C:\\training.dat”

#define WEIGHTS_FILE "C:\\weights.dat"
#define QUTPUT _FILE "C:\\output.dat”
fidefine TEST_FILE "C:\\test.dat"
#include "conti.cpp"

void main()

{
float error_tolerance=0.1;
float total error=0.0;
float avg_error_per_cycle=0.0;
float error_last_cycle=0.0;
float avgerr_per_pattern=0.0;
float error_last_pattern=0.0;
float learning_parameter=0.02;
unsigned temp,startup;
long int vectors _in_buffer;

long int max_cycles;

long int patterns_per_cycle=0,

long int total_cycles, total_patterns;
int 1
network backp;

FILE * training_file ptr,*weights_file ptr,* output_ﬁle - ptr;
FILE * test_file ptr,* data_file ptr;

if ((output_file ptr=fopen(OUTPUT_FILE,"w")})==NULL)

{
cout<<"problem opening output file \n";
exit(1);
1
cout<<"  memmemomeeee NEURAL NETWORK PREDICTION--- \n"";
cout<<"  cmeemeee- Emmanuel Olawale Olaniyi AJIBOLA------—-----—--- \n'';
cout<<" \n'"';
cout<<" C++ Neural Networks and fuzzy logic \n'';
cout<<" backpropagation simulator\n'';
cout<<" -= \n"';
cout<<" Please enter 1 for TRAINING on, or 0 for off:\n\n"';
cin>>temp;
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backp.set_training(temp}); :
if (backp.get_training_value()==1)

{ . !
~ cout<<" --> Training mode is *ON*,weights will be saved\n",
%’; cout<<" in the file weights.dat at the end of the\n";’
cout<<" current set of input (training) data\n";
}
else
{
cout<<"  --->Training mode is *OFF* weights will be\
loaded\n";
cout<<"  from the file weights.dat and the current\n";
cout<<" (test) data set will be used. For the test\n";
cout<<" data set, the test.data file should contain\n";
cout<<" only inputs, and no expected outputs.\n";
J |
if (backp.get_training value()==1) i
{ i
//Read in values fore the error tolerance and
~ //the learning rate parameter
‘E‘.’:}‘ cout<<" Please enter in the error_tolerance\n";
cout<<" ---between 0.001 and 100.0,try 0.1 to start\
\n";
cout<<"\n";
cout<<" and the learning parameter,beta\n";
cout<<"  —---- between 0.01 to 1.0,try 0.5 to start ---\
\n\n";
cout<<" separate entries by a space\n”;
cout<<"  example:0.1 0.5 sets defaults mentioned \n\n“
cin>>error_tolerance>> learning_parameter;
f o m e e e ‘
/! open training file for reading i
e e
if((training_file ptr=fopen(TRAINING_FILE,"r"))==NULL)
{
cout<<" problem opening training file\n";
exit(1);
}
data_file ptr=training_file ptr; //training on
//read in the maximum number of cycles
o cout<<" Please enter the maximum cycles for the simulation\n";
":K: cout<<" A cycle is one pass through the data set.\n"; '
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cout<<" Try a value of 10 to start with\n";
cin>>max_cycles;

h
else
{ .
if ((test_file ptr=fopen(TEST_FILE,"r")}==NULL)
{
cout<<"  problem opening test file\n";
exit(1);
}
data_file_ptr=test_file ptr;
b

/ftraining and non training mode.

f/initialize counters
total cycles=0;
total _patterns=0;

//get layer information
backp.get layer_info();
//set up the network
backp.set_up network();

//initialize the weights
if (backp.get_training_value()==1)
{
//randomize weights
/lopen weights file for writing

if((weights_file_ptr=fopen(WEIGHTS_FILE,"w"))
==NULL) '
{

cout<<"problem openiing weights file\n";
exit(1),

}

backp.randomize_weights();

else{ .
if((weights_file_ptr=fopen(WEIGHTS_FILE,"r"))
==NULL) '

;
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cout<<"problem opening weights file\n";
exit(1);

}
backp.read weights(weights file ptr);

.
g
¢

)
- T\'

}

//main loop

startup=1;

vectors_in_buffer=MAX_ VECTORS;//startup condition
total _error =0;

while(  ((backp.get training_vaiue()==1)
&&(avgerr_per_ pattern |
>error_tolerance) ,

&&(total_cycles<max_cycles)
&&(vectors_in_buffer!=0)).
ll((backp.get_training_vaiue()==0)
&&(total_cycles<1))
[((backp.get_training_value()==1})
&&(startup==1)) .
)

startup=0; .
error_last_cycle=0;//reset for each cycle
patterns_per cycle=0;

//process all the vectors in the datafile
//going through one buffer at a time
{/pattern by pattern

while((vectors_in_buffer==MAX_VECTORS)) :

{ .
vectors_in_buffer= backp.fill_IObuffer(data_file ptr);/fill

buffer

if(vectors_in_buffer<()

{
cout<<"error in reading in vectors,aborting\n";
cout<<"check that there are no extra linefeeds\n";
cout<<"in your data file,and that the number\n";
cout<<"of layers and size of layers match the\n”;
cout<<"the parameters provided.\n";
exit(1);

}

T /fprocess vectors
k\- for(i=0;i<vectors_in_buffer;i++)
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//get next pattern
backp.set_up_ pattern(i);
total patterns-++;
patterns_per_cycle++;
/fforward propagate
backp.forward_prop();

if (backp.get_training_value()==0)
backp.write_outputs(output_file ptr);
/fback_propagate,if appropriate
if(backp.get_training_value()==1)
{
backp.backward prop(error_last_pattern);
: error_last cycle+=error_last pattern *
error_last_pattern;

/if({(avgerr _per pattern>error_tolerance)&&(total_cycles+1 <max_cycles))
backp.update_weights(learning_parameter);
// backp.list_weights();
H
}

error_last pattern=0;

avgerr_per_pattern=((float)sqrt({double)error_last_cycie))/patterns_per_cycle,
total_error+=error_last_cycle;
total cycles++;

cout<<"\n\n";
cout<<total cycles<<"\t"<<avgerr_per_pattern<<"\n";
fseek(data file ptr,0L,SEEK SET);/reset the file pointer to the
beginning of the file
vectors_in_buffer=MAX VECTORS;//reset
y//end main loop
cout<<"\n\n\n\n\n\n\n\n\n\n'n";

cout<<"done:results in file output.dat\n”;
cout<<"  training: last vector only\n";

cout<<”  not training: full cycle\n\n";
if (backp.get training_value()==1)
{

backp.write_weights(weights_file ptr);
backp.write outputs(output_file ptr);

111



APPENDIX C

avg_error_per_cycle=(float)sqrt((double)total error)/ total cycles;
error_last_cycle=(float)sqrt((double)error _last ‘cycle);

cout<<" weights saved in file weights.dat\n"

cout<<"\n";

cout<<"-—-m- >average error per
cycle="<<avg_error_per cycle<<"<----- "
cout<< "-->error last cycle="<<error _last cycle<<"< ----- n";
cout<<"-->error last cycle per

pattern="<<avgerr_per_ pattern<<"<----\n";

}

COMt<< M e e >total cycles="<<total cycles<<
n O \nﬂ,

COUt L mmmmmmm e e >total patterns="<< total patterns<<
RCE \n";

cout<<"-- e \n";

/{close all files
fclose(data_file ptr);
fclose(weights_file ptr);
fclose(output_file ptr);
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2

#include<stdio.h>

- #include<iostream.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>

L iV}

e
e
-,

#define MAX _LAYERS 5
#define MAX_VECTORS 100

class network;

class layer
{
protected:
int num_inputs;
int num_outputs;
float *outputs; // pointer to array of outputs

float *inputs;//pointer to array of inputs which are outputs of some other layer

~ friend network;
£ o public:

= virtual void calc_out()=0;

class input_layer:public layer
{ -
private:
public:
input_layer(int,int);
~input_layer();
virtual void calc_out();

¥s

class middle layer;
class output_layer:public layer
{
protected:

float * weights;
float * output_errors;// array of errors at output
float * back_errors;//array of errors backpropagated
float * expected_values; // to inputs

= friend network;
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public:
output_layer(int,int);
~output_layer();
virtual void calc_out();
void calc_error(float &);
void randomize weights();
void update weights{const float);
void list_weights();
void write_weights(int, FILE *};
void read_weights(int,FILE *);
void list_errors();
void list_outputs();
3
class middle layer:public output_layer
{ .
private:
public:
middle_layer(int,int);
~middle_layer();
void calc_error();

b

class network

{ .

private:
layer *layer ptr[MAX_ LAYERS];
int number_of layers;
int layer size[MAX LAYERS];
float *buffer;
fpos_t position;
unsigned training;

public:
network();
~network();
void set_training(const unsigned &);
unsigned get training vaiue();
void get_layer info();
void set_up_network();
void randomize weights(};
void update weights(const float);
void write_weights(FILE *);
void read_weights(FILE *),
void list_weights();
void write_outputs(FILE *);
void list_outputs();
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void list_errors();

void forward_prop();

void backward_prop(float &);
int fill_IObuffer(FILE *);
void set_up_ pattern(int);

b
/flayer.cpp
inline float squash(float input)
{/squashing function
{
if (input<-50)
return 0.0;
else if (input>50)
return 1.0;
else return (float)(1/(1+exp(-(double)input)));
}
inline float randomweight(unsigned init)
{
, int num;
%{;C if (init=1)
o srand((unsigned)time(NULL));
num=rand() % 100;
return 2*(float(num/100.00))-1;
}
static void force_fpf()
{
float x, *y;
y=&Xx;
x=*y;
}
// input layer
input_layer::input_layer(int i,int o)
{
num_inputs=i;
num_outputs=o;
outputs= new float[num_outputs],
if (outputs==0)
{
o= cout <<"not enough memory\n";

<L : cout<<"choose a smaller architecture\n";
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exit(l);

J""\“ }
input_layer::~input_layer()

delete[num_outputs] outputs;

}

void input_layer::calc_out()

{

/fmothing to do, yet
} .

/—

output_layer::output_layer(int i,int 0)

{ . .
num_inputs=i;
num_outputs=o,
weights=new float[num_inputs*num_outputs};
output_errors=new float[num_outputs];
back_errors=new float[num_inputs];
outputs=new float[num_outputs];
expected_values=new float[num_outputs];
if{(weights==0)||(output_errors==0)||(back_errors==0)

|[(outputs==0)||(expected_values==0))

£y

{

cout<<"not enough memory\n";
cout<<"choose a smaller architecture\n";
exit(1);

}

output layer::~output_layer()

{
/fsome compilers may require the array
/fsize in the delete statement;those
//conforming to ansi C++ wili not
delete [num_outputs*num_inputs] weights;
delete [num_outputs] output_errors;
delete [num_inputs] back_errors;

'
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delete [num_outputs] outputs;

o void output_layer::calc_out() .
I o - - t
int i,).,k;
float accumulator=0.0;

for j=0;)<num_outputs;)++)

{
for (i=0;i<num_inputs;i++)

{
7 k=1*num_outputs;
if(weights[k+j]*weights[k+j]>1000000.0)

{
cout<<"weights are blowing up\n";
cout<<"try a smaller learning constant\n";
cout<<"e.g, beta=0.02 aborting...\n";
exit(1); g

b

outputs[jj=weights[k+j]*(* (inputs+1));
accumulator+=outputs]j];
¥ i
//use the sigmoid activation function ’
outputs[j]=squash(accumulator);
accumulator=0;

s,

}
}
void output_layer::calc_error(float & error)
{ |
mt 1,),k; |

float accumulator=0;
fioat total error=0;
for j=0;3<num_outputs;}++)

{ output_errors[j]=expected_values[j]-outputs[j];
total _error+=output_errors[j]; i
}
error=total_error;
’) for (i=0; i<num_inputs;i++)
¥ - { i
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k=1*num_outputs;
for(j=0;j<num_outputs;j++)
{
~ back_errors[i]=weights[k+j]*output_errors[j};
S accumulator+=back_errors{i];
' }
back_errors[i]=accumulator;
accumulator=0;
//mow multiply by derivative of
//sigmoid squashing function ,which is
// just the input*(1-input)
back_errors[i}*=(*(inputs+i))*(1-(*(inputs+i)));
}
}
void output_layer::randomize_weights()
{

int ij.k;

const unsigned first_time=1;

const unsigned not_first_time=0;
A float discard;

discard =randomweight(first_time);
for (i=0;i<num_inputs;i++)

{
k=1*num_outputs;
for(j=0;j<num_outputs;j++) :
weights[k+j}=randomweight(not_first_time); -
}
!
void output_layer::update weights(const float beta)
{
int 1,],k;

/llearning law: weight change =
/l beta*output_error*input

for(G=0;i<num_inputs;i++)
{
k=i*num_outputs;
for (j=0;)<num_outputs;j++)

weights[k-+]+=beta*output_errors[j}*(*(inputs+i));

oy

118



i3

APPENDIX D

void output_layer::list weights(}
{
nt 1,),k;
for (i=0;i<num_inputs;i++)
{
k=t*num_outputs;
for(j=0;j<num_outputs;j++)
cout<<"weight["<<i<<""<<j<<"]
1s:"<<weights[k+j];

}
}
void output_layer::list_errors()
{ v o
int i,j;
for (1=0;i<num_inputs;i++)

cout<<"backerror["<<i<<  "]is
"<<back_errors[i]<<"\n";

for (7=0;j<num_outputs;j++)
‘ cout<<"outputerrors["<<j<<"]
1s:"<<output_errors[j]<<"\n";

}

void output_layer::write_weights(int layer no, FILE * weights file ptr)
{
int 1,),k;
/fassume file is already open and ready for
/iwriting
//prepend the layer no to all lines of data
//format;
/l layer no weight[0,0] weight[0,1] ....
// layer_no weight[1,0] weight[1.1].....
for(i=0;i<num_inputs;i++)
{
fprintf(weights_file ptr,"%i ",layer _no);
k=1*num_outputs;
for(j=0;j<num_outputs;j++)

{

1
fprintf(weights_{file_ptr,"\n");

fprintf(weights_file ptr,"%f",weights[k+j]);

}
}

void output_layer::read weights(int layer no,FILE * weights_file ptr)
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int i.j.k;
~ //assume file is already open and ready for reading
- /Nook for the prepended layer _no
?& while (1)
{

fscanf(weights file ptr,"%i",&;j);

if ((j==layer_no)||(feof(weights_file ptr)))
break;

else

{
while (fgetc(weights file ptr) I="\n')
{;}// get rest of line
}
;
if(!(feof(weights_file ptr)))
{

/fcontinue getting first line
1=0;
for (j=0;j<num_outputs;j++)

fscanf(weights_file ptr,"%f" &weights[j]);//i*num_outputs=0
D

fscanf{weights_file ptr,"\n");

//now get the other lines

for(i=1;i<num_inputs;i++)

{
fscanf(weights_file ptr,"%i",&layer_no);
k=i*num_outputs;
for(j=0;j<num_outputs;)++)

{

}
}
fscanf(weights_file ptr,"\n");
}

else cout<<"end of file reached\n";

fscanf{weights_file ptr,"%f",&weights{k+j]);

}

void output_layer::list_outputs()

{
int j;
XZ for(j=0;j<num_outputs;j++)
N\ {
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cout<<"outputs["<<j <<"Jis: "<<outputs[j}<<"\n";

)
}
flmmmemmmee e
1 middle layer
e e L :

mid_dle_layer::middleilayer(int i,int 0):
output_layer(i,0)

{

3
middle layer::~middle_layer()

{
delete [num_outputs*num_inputs] weights;
delete [num_outputs] output_errors;
delete [num_inputs] back_errors;
delete [num_outputs] outputs;

}

void middle_layer::calc_error()

{
int 1,7.k;
float accumulator=0;
for(i=0;i<num_inputs;i++)
{

k=1*num_outputs;

for(j=0;j<num_outputs;j++)

{ .
back_errors[i]=weights[k+j]*(*{output_errors+j));
accumulator+=back_errors[i];

}

back_errors[i]=accumulator;

accumulator=0; {

//multiply by derivative of

//sigmoid squashing function-input*(1-input) .

back_errors[i]*=(*(inputs+i))*(1-(*(inputs+i)));

}
}
network::network()
{
position=0L,
}
network::~network()
{
int 1,),k; ,

i=layer ptr[0]->num_outputs;//inputs
j=layer_ptr[number_of layers-1]->num_outputs;//outputs
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network.\n";

5.\n";

maximum entries :\n\n";

k=MAX_VECTORS; ;

delete [(i+j)*k]buffer;

}

void network::set_training{const unsigned & value)

{
}

training=value;

unsigned network::get training_value()

{
}

return training;

void network ::get layer info()

{

int i;

/1

/! Get layer sizes for the network

/

[femmmmmmemeeee emeeeeeem e

cout<<"  Please enter in the number of layers for your
. i
cout<<" you can have a minimum of 3 to a maximum of

cout<< " 3 implies i hidden layer;5 implies 3 hidden layers:\n\n";
cin>>number_of_layers;

cout<<" Enter in the layer sizes separated by spaces.\n";

cout<<"For a network with 3 neurons in the input layer,\n";

cout<<"2 neurons in a hidden layer and 4 neurons in the \n";

cout<<"output layer ,you would enter :3 2 4.\n"; .

cout<<" You can have up to 3 hidden layers.for five

for (i=0;i<number_of_layers;i++)

{ cin>>layer size[i];
}
I
f e e
/1 size of layer:
ff-mmmmnmeeee - e
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}

void network::set up network()

{

iy

int i,jk;

Ty

layer ptr[0]=new input_layer(0,layer_size[0]);
for (i=0;i<{number_of layers-1);i++)

{
layer ptr[i+1]= new
middle layer(layer_size[i],layer_size[i+1]);

}

layer_ptr[number_of layers-1]=new :
output_layer(layer_size[number_of layers-2],layer_size[number_of_layers-1]);
for (i=0;i<(number_of layers-1);1t++) '

{
if(layer ptr(i]==0)
A {
. cout<<"insufficient memory\n";
cout<<"use a smaller architecture\n";
exit(1);

[/ — S—

for (i=1;i<number_of layers;i++)

layer ptr[i]->inputs= layer_ptr[i-1]->outputs;
//for backpropagation ,set the output_errors to next layer
// back_errors for all layers except the output
// layer and input layer

for (i=1;i<number_of layers-1;i++)

((output_layer *)layer_ptr[i])->output_errors=((output_ layer.

#layer ptr[i+1])->back_errors;

//define the iobuffer that caches data from the datafile
i=layer_ptr[0]->num_outputs;//inputs
j=layer_ptr[number_of layers-1]->num_outputs;//outputs

t._:?)\
Pt

3
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k=MAX_VECTORS;
buffer=new float[(1+))*k];
if (buffer==0)
cout<<"insufficient memory for buffer\n";

}
void network::randomize_weights()
{ . .
int i;
for (i=1;i<number_of layers;i++)
((output_layer *)layer ptr[i])->randomize_weights();
}
void network::update_weights(const float beta)
{ . -
int i;
for(i=1;i<number_of layers;i++)
((output_layer *)layer ptr{i])->update_weights(beta),
} ;

void network::write_weights(FILE * weights_{file_ptr)
{ - .
nt 1;
for (i=1;i<number_of layers;i++)
((output_layer *)layer ptr[i])-

>write_weights(i,weights_file_ptr);

}

void network::read_weights(FILE * weights_file_ptr)
{
int i;
for (i=1;i<number_of layers;i++)
((output_layer *)iayer ptr[i])-

>read_weights(i,weights_file_ptr);

} -

void network::list_weights()

{
nt i;
for(i=1;i<number_of layers;i++)
{

cout<<"layer number :"<<j<<"\n";
((output_layer *)layer_ptr[i]) ->list_weights();
}
}

void network::list_outputs()
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{
nt 1;
for(i=1;1<number_of layers;i++)
{ .
cout<<"layer number:"<<i<<"\n";
((output_layer *)layer ptr[i])->list_outputs();
3
b
void network::write_outputs(FILE *outfile)
{

int 1,ins,outs;
ins=layer ptr[0]->num_outputs; _
outs=layer ptrinumber of layers-1]->num_outputs;
float temp; :

i fprintf(outfile,"for input vector:\n");
/ffor (1=0;i<ins;i++)

1/ {
/ temp=layer_ptr{0]->outputs|i];

i fprintf(outfile,"%f " temp);
/i }

Hfprintf(outfile, \noutput vector is :\n");
for (i=0;i<outs;i++)

{
temp=layer ptr[number of layers-1]-> outputs{i]
fprintf{outfile,"%f ",temp); :

}

if (training==1)

{

fprintf{outfile,"expected output vectoris:\n");
for (1=0;i<outs;i++)
{
temp=((output_layer
*)(layer_ptr[number of layers-1]))}->expected values[i];
fprintf(outfile,"%f " temp);
}

}

fprintf(outfile,"\n");
}

void network::list_errors(}

{

2
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inti;.
for(i=1;i<number_of layers;i++)
{
cout<<"layer number ;"<<i<< "\n";
((output_layer *)layer ptr{i])
->list_errors();
}

int network::fill_10buffer(FILE * inputfile)

}
{
}

int i,k count,veclength;
int ins,outs;
ins=layer_ptr[0]->num_outputs;
outs=layer_ptr[number_of layers-1]->num_outputs;
if(training==1)

veclength=ins+outs;
else

veclength=ins;
count=0; .‘
while ((count<MAX_ VECTORS)&&(!feof(inputfile)))
{

k=count*(veclength);

for (i=0;1<veclength;i++)

{
)

fscanf(inputfile,"\n");
count++;

fscanf(inputfile,"%f"  &buffer[k-+i]);

if (!(ferror(inputfile)))
return count;
else return -1;

void network::set_up_pattern(int buffer index) -

{

int i.k;

int ins,outs;

ins=layer_ptr[0]->num_outputs;
outs=layer_ptr[number_of layers-1]->num_outputs;
if (training==1)
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k=buffer_index*(ins+outs);
else

k=buffer index*ins;
for(i=0;i<ins;i++)

layer_ptr[0]->outputs[i]=buffer[k+i];
if{training==1)

{
for(i=0;i<outs;i++)
((output_layer *)layer ptr[number of layers-1])->
expected_values[i]=buffer[k-+i+ins];
}
b
void network::forward prop()
{ . .
int i;
for(i=0;i<number_of layers;i++)
{
layer_ptr[i]->calc_out(),
}
}
void network::backward_prop(float & toterror)
{ . .
mt 1;
((output_layer*)layer_ptr[number_of layers-1])->
calc_error(toterror),
for(i=number_of layers-2;i>0;i--)
{
((middle_layer*)layer ptr[i])->
calc_error();
}
}
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#include<stdio.h>
#include<iostream.h>
#include<stdlib.h>
#nclude<math.h>

void main ()

{
FILE * outfile,*infile;
float div[245]{9];
float a[245][245];
float p[245][9];
int num_fields=12;
mt 1;
int j;
float mean[9];
float sdev[9];
float d[9];
intk;
float n;
n=0;
float c[9];

infile=fopen("C:\\day.dat","r");
outfile=fopen("C:\\arrayy.dat", "w");

2

if ((infile==NULL} || (outfile ==NULL))

{
cout<< " cant open a file\n";
exit(1);
b
while(!(feof(infile))) -
{
for (i=0;i<245;i++)
for(5=0:j<9;j++)
{
fscanf{infile,"%f ", &p[i][j1);
}
}
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/fcout << p{1][4]-p[0]{4];

float diff[245][9];:

for(1=0;1<243;i++)
for(j=0;j<9:j++)

{
difﬂi][ir(p[iﬂ]D]—p[i][i]);

/Mfinding the mean

for(j=0,j<9;j++)
{

for(i=0;i<243:i++)
{
n+=diff[i][j];
}
c[jl=n;

n=0;

//computes the mean
for( j=0;)<9;j++)
{

mean(j]=cfj]/243;

float sd=0;
/fcomputes the standard deviation
for(G=0;j<9;j++)

for(1=0;1<243;i++)
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{
AT 1=(pli+1](]-pE1GD):
sd+=pow((diff[i][j]-mean[j]),2);

}
d[i]=3d;
sd=0);
}
for(j=0;j<9;j++)
{
sdev[j]=sqrt(d[j]/243);
/ cout<<sdev[j]<<" ";
}

fleout<<" "<<sdev[4];
cout<<" "<<mean[8]<<" "<<sdev[§];

//normalising the range

float t[245][9];
for(i=0;1<243;i++)
{
for(j=0;)<9,j++)
{
/fif(sdev(j]==0)
/{sdev[j]=0.1;}
t{i][j J=(diffTi][j]-mean[j])/sdev{j];
}
}

//squashing funnction
float h[245][9];

for( i=0;i<243;i++)
{ for(j=0;j<9 ;j++)
{
if(t[i][j]< -20000)
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t[i][j]=0;
h{i]]=t{ill]:}

/1 cout<<h[i][j]<<" "}
else if(t[i][j]>20000)
{

tfi][i]=1.0;
h[]GI=t(]0];)

/1 cout<<h[i][j]<<" ";}
else {

h{i}]= (float)(1/(1+exp(-t[i]G1))):}

" cout<<"  accenting the change"<<"\n\n";

/faccenting the ch8ange(image processing technique)
float 5[245][97;
for(i=0;1<243;i++)

{
for(j=0;j<9;j++)
s(GI=EG+HIGT-pHIGN/ I+ 1]G1+pLIG];
/feout<<s[i]fj]<<" ",
}
/l cout<<"\n\n";
}

/fcout<<" Time shifting and final data set"<<"\n\n";
for(i=0;i<243;i++)
{
for(j=0;j<18;j++)
{

if(>8)
{
if(j==9)
{ h[i](j-9]=h[i+1](j-9);
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fprintf{outfile,"%\t" h{i][j-9]);}

else{
fprintf(outfile,"%f\t", h[i][j-9]) ;}
} .
else

{fprintf(outfile,"%\t" s[i][j]);}

}

fprintf{outfile,"\n");

}
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APPENDIX F

#include<stdio.h>
#include<iostream.h>
#include<stdlib.h>
#include<math.h>

void main ()
{
FILE * outfile,*infile;
float p[34];
float d,e ,f[34];
int j;
float sdev=3.75946;
float mean=0.000707759;

f[01=0;

infile=fopen("C:\\afile.dat","r");
outfile=fopen("C:\\bfile.dat", "w"};
if ((infile==NULL) || (outfile ==NULL))
{
cout<< " cant open a file\n";
exit(1);

while(!(feof(infile)))

{
for(j=0;j<34;j++)
{
fscanf(infile,"%f ", &p[j]);
fprintf{infile,"\n");
1
}
for (j=1;j<34;j++)
{
d=-(log((1/p[i])-1));
e=((d*sdev)+mean);
\ fljJ=e+]j-1];
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for (j=0;j<34;j++)

{
fprintfoutfile,"%\t" fj]);

fprintf{outfile,"\n");
}
}
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