BACTERIAL DEGRADATION OF CARBAZOLE AND MICROBIAL DIVERSITY OF HYDROCARBON-CONTAMINATED SOILS IN A TROPICAL ENVIRONMENT

By

SALAM, LATEEF BABATUNDE

(B.Sc., LASU; M.Sc., LAGOS)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
(MICROBIOLOGY)
UNIVERSITY OF LAGOS
AKOKA-LAGOS

DEDICATION

This work is dedicated to my beloved wife and children and to my mentors (Academic and Religious) who gave me a clear insight about life and taught me the key ingredients to academic success.

ACKNOWLEDGEMENTS

I must thank first God Almighty, the Originator of success and the Bestowal of grace and favour for His immeasurable love, kindness and assistance during the challenging periods of the doctoral programme. Without His divine favour and blessing, I would have abandoned the programme midway.

My profound gratitude and appreciation goes to my supervisors, Prof. M.O. Ilori and Prof. O.O. Amund for their constructive criticisms, helpful discussions, suggestions, and novel initiatives, which contributed immensely to the success of this work. I sincerely express my heartfelt gratitude to Prof. M.O. Ilori for nudging me to move on, subtly and persistently inspiring me to greater heights and consistently reminding me that the road to academic success may be rough and difficult, but it is nonetheless achievable.

My heartfelt gratitude goes to my instructor, Prof. Hideaki Nojiri of Biotechnology Research Center, University of Tokyo, for his critical evaluation, helpful discussion and unflinching support and confidence he had in me. I sincerely thank him for the exposure and research experience gained from his laboratory while in Tokyo, Japan.

I thank lecturers in the Department of Microbiology for their useful contributions and encouragement, especially Prof. S.CU. Nwachukwu, Prof. I.A. Adeleye, Prof. O.O. Aboaba, Prof. E.O. Igbosuah, Dr. F.A. Oguntoyinbo, Dr. R.E. Uzeh, Dr. S.A. Adebusoye, Dr, C.I. Ayolabi, Dr. A.E. Omotayo, Dr. O.F. Obidi and Dr. Oyetibo.

I also appreciate the contributions of my colleagues, especially Mr. Gbenga Adewunmi, Mrs Funke Oyabamiji, Mr. S.A. Ajani, Ifeoma, Bisi, Mrs. Kehinde AbdulKareem, Mrs. Nike Braimoh and others. I must not fail to thank Engineer AbdulWaahid Kolawole for bailing me out financially during my trip to Japan.

I also express my gratitude to Mr. Aderibigbe, Mrs. Dosunmu, Mrs. Osagie, Mr. Ojoniyi, Mr. J. Bamiro and Mr. Joe Orizu for provision of materials and technical assistance. I will also appreciate the love, kindness and intellectual guidance of Dr. O.S. Obayori, who first introduce me to the world of research and consistently guided and mentored me.

To my amiable and lovely wife, my companion and soul mate of ten years, Mrs. F.A. Abdussalam (ACA), I say thank you for the love, care, moral and financial support you gave me during those demanding and difficult period of our relationship.

TABLE OF CONTENTS

	Page
Title page	i
Certification	ii
Dedication	iii
Acknowledgement	iv
Table of contents	v
List of Tables	xiii
List of Figures	xiv
List of Plates	XX
List of Appendices	xxi
Glossary of Terms	xxii
Abstract	xxv
CHAPTER ONE	
Introduction and Background of Study	
1.0 Introduction	1
1.1 Background of Study	2
1.2 Statement of Problems	4
1.3 Significance of Study	5
1.4 Aim/Objectives of Study	6
General Objective of Study	6
Specific Objectives of Study	6
CHAPTER TWO	
Literature Review	
2.1 Carbazole: General Description	8
2.1.1 Solubility of Carbazole	9
2.1.2 Aromaticity of Carbazole	10
2.2 Carbazole: Industrial and Medical Importance	13
2.3 Carbazole in Petroleum Crude Refining	15

2.4 Environmental Fates of Carbazole	16
2.4.1 Atmospheric Fate	16
2.4.2 Terrestrial Fate	16
2.4.3 Aquatic Fate	17
2.5 Toxicity of Carbazole	17
2.6 Biodegradation of Heterocyclic Aromatic Compounds	19
2.6.1 Biodegradation of Dibenzofuran (DF) via Angular Dioxygenation	22
2.6.2 Biodegradation of Dibenzo-p-Dioxin (DD) via Angular Dioxygenation	24
2.6.3 Biodegradation of Dibenzothiophene (DBT)	25
2.6.4 Bacterial Degradation of Carbazole	26
2.6.4.1 Diversity of Carbazole-Degrading Bacteria	26
2.6.4.2 Degradation Pathways of Carbazole	27
2.6.4.2.1 Lateral Dioxygenation of Carbazole	29
2.6.4.2.2 Hydroxylation of Carbazole	29
2.6.4.2.3 Angular Dioxygenation of Carbazole	30
2.7 Carbazole Degradative Genes	32
2.7.1 Pseudomonas-Type car Gene Cluster	32
2.7.2 Sphingomonas-type car Gene Cluster	33
2.7.3 The car Gene Cluster in Nocardioides aromaticivorans IC177	34
2.7.4 The car Gene Cluster in Sphingomonas sp. CB3	34
2.7.5 The <i>car</i> Gene Cluster in Marine Carbazole Degraders	35
2.7.5.1 car Gene Cluster of Neptuniibacter sp. strain CAR-SF	37
2.7.5.2 car Gene Cluster of Lysobacter sp. strain OC7	37
2.7.5.3 car Gene Cluster of Novel Genus strain OC9	38
2.8 The CARDO System in Carbazole Degraders and its Substrate Specificity	39
2.9 Factors Affecting Biodegradation of Carbazole and Related	43
Hydrocarbon Compounds	
2.9.1 Temperature	43
2.9.2 Nutrients	43
2.9.3 Chemical Composition	44
2.9.4 Solubility	44

2.9.5 Bioavailability	45
2.9.6 Oxygen	46
2.9.7 Soil pH	46
2.9.8 Organic Matter Content	47
2.9.9 Water Activity	47
2.10 Bioremediation	47
2.11 Soil Microbial Diversity	49
2.11.1 Soil as a Habitat for Microorganisms	50
2.11.2 Method of Studying Microbial Diversity in Soil	50
2.11.2.1 Biochemical-Based Methods	51
2.11.2.2 Molecular-Based Methods	53
2.11.2.2.1 Partial Community Analysis Approach	54
2.11.2.2.1.1 Clone Library Analysis of 16S Rrna	54
2.11.2.2.1.1.1 Soil Sample Collection	55
2.11.2.2.1.1.2 DNA Extraction	55
2.11.2.2.1.1.3 Polymerase Chain Reaction (PCR) Amplification	56
2.11.2.2.1.1.4 Cloning, Plasmid Extraction/Colony PCR and	57
Sequence Analysis	
CHAPTER THREE	
Materials and Methods	
3.1 Materials	60
3.1.1 Study Sites	60
3.1.1.1 Abandoned Coal Power Plant Soil (ACPP)	60
3.1.1.2 Mechanic Workshop, Okokomaiko (MWO)	60
3.1.1.3 NEPA Substation, UNILAG (NESU)	60
3.1.2 Sampling	61
3.1.3 Chemicals Used for the Study	64
3.1.4 Sterilization and Aseptic Techniques	62
3.1.4.1 Glassware	62
3.1.4.2 Media	62

3.1.4.3 Sugar Solutions	62
3.1.4.4 Physiological Saline	62
3.1.4.5 Work Bench	63
3.1.4.6 Inoculating Loop	63
3.1.4.7 Glass Rod	63
3.1.4.8 Filter Papers	63
3.1.4.9 Serial Dilutions	63
3.1.4.10 Culture Media	63
3.1.4.10.1 Liquid Media	63
3.1.4.10.2 Solid Media	64
3.1.5 Reagents	64
3.1.6 Incubation	64
3.2 Methodology	65
3.2.1 Determination of Physico-Chemical Properties of soils	65
3.2.1.1 Moisture Content	65
3.2.1.2 Soil pH	65
3.2.1.3 Soil Conductivity	65
3.2.1.4 Water Holding Capacity	65
3.2.1.5 Grain Size Analysis	66
3.2.1.5.1 Sieve Analysis	66
3.2.1.5.1.1 Wet Sieve Analysis	66
3.2.1.5.1.2 Dry Sieve Analysis	66
3.2.1.5.2 Sedimentation by Hydrometer Method	66
3.2.1.6 Total Organic Carbon	67
3.2.1.7 Total Hydrocarbon Content	67
3.2.1.8 Total Nitrogen Content	68
3.2.1.9 Available Phosphorus	68
3.2.1.10 Potassium Content	68
3.2.1.11 Heavy Metals	69
3.2.2 Microbiological Analysis of Soil Sample	69
3.2.2.1 Total Heterotrophic Counts	69

3.2.2.2 Hydrocarbon-Utilizing Bacterial and Fungal Counts	69
3.2.2.3 Total Counts for Nitrogen-Fixers and Actinomycetes	70
3.2.3 Isolation of Carbazole-Degrading Bacteria	70
3.2.3.1 Continuous Enrichment Method	70
3.2.4 Maintenance of Isolates	71
3.2.5 Identification and Characterization of Carbazole-Degrading Isolates	71
3.2.5.1 Colonial Morphology	71
3.2.5.2 Gram Staining	71
3.2.5.3 Biochemical Characteristics of Isolates	72
3.2.5.3.1 Motility Test	72
3.2.5.3.2 Spore Staining	72
3.2.5.3.3 Catalase Test	72
3.2.5.3.4 Oxidase Test	73
3.2.5.3.5 Indole Production Test	73
3.2.5.3.6 Methyl Red Test	73
3.2.5.3.7 Voges-Proskauer Test	74
3.2.5.3.8 Hydrogen Sulphide Production	74
3.2.5.3.9 Urease Test	74
3.2.5.3.10 Sugar Fermentation	75
3.2.5.3.11 Starch Hydrolysis	75
3.2.5.3.12 Gelatin Liquefaction	75
3.2.5.3.13 Nitrate Reduction	76
3.2.5.4 Molecular Characterization of Isolates	76
3.2.5.4.1 DNA Isolation	76
3.2.5.4.2 Nucleic Acid Analysis	77
3.2.5.4.3 Amplification of 16S rRNA Gene of Bacterial Isolates	78
3.2.5.4.4 Agarose Gel Electrophoresis	78
3.2.5.4.5 Recovery of 16S PCR Amplicons from Agarose Gel	79
3.2.5.4.6 Ligation of DNA Fragment into Plasmid Vector	80
3.2.5.4.7 Transformation of <i>E. coli</i> with Recombinant Plasmid	80
3.2.5.4.8 Plasmid Extraction and Digestion with Restriction Enzymes	80

3.2.5.4.9 Nucleotide Sequencing and Sequence Analysis	81
3.2.6 Substrate Specificity	82
3.2.7 Biodegradation Studies	83
3.2.7.1 Evaluation of Carbazole Biodegradation	83
3.2.7.2 Analytical Studies	83
3.2.7.2.1 Extraction of Residual Carbazole for Gas Chromatography	83
3.2.7.2.2 Gas Chromatographic Analysis	83
3.2.7.2.3 Detection of Metabolites of Carbazole Degradation	84
3.2.7.2.3.1 Metabolites Detection from Growing Cells	84
3.2.7.2.3.2 Metabolites Detection from Resting Cells	84
3.2.7.2.3.3 HPLC Analysis of Anthranilic Acid Metabolites	85
3.2.7.2.3.4 Catechol Dioxygenase Assay	85
3.2.8 Degradation of Carbazole in Soil Microcosm	86
3.2.8.1 Soil Sample	86
3.2.8.2 Spiking Method	86
3.2.8.3 Inocula Preparation for Soil Inoculation	87
3.2.8.4 Analytical Method	87
3.2.9 Bacterial Diversity Studies	88
3.2.9.1 Preparation of Soil Sample	88
3.2.9.2 DNA Extraction from Polluted Soil	88
3.2.9.3 Clone Library Analysis	89
3.2.9.3.1 Amplification of 16S rDNA from Total DNA Extracted	89
From Soil	
3.2.9.3.2 Detection and Purification of PCR Product	90
3.2.9.3.3 Cloning of 16S rDNA PCR Product	90
3.2.9.3.4 Ligation of the PCR Product into Plasmid Vector	90
3.2.9.3.5 Transformation of Competent Cells with Recombinant Vector	91
3.2.9.3.6 Colony PCR	91
3.2.9.3.7 Detection and Purification of PCR Products	92
3.2.9.3.8 Sequencing	92
3.2.9.3.9 Sequence Data Analysis	92

3.2.9.3.10 Nucleotide Sequence Accession Numbers	93
3.2.10 Statistical Analysis	93
CHAPTER FOUR	
Results	
4.1 Physico-Chemical Properties of Study Sites	94
4.2 Microbiological Properties of Study Sites	97
4.3 Isolation and Characterization of Carbazole Degraders	99
4.3.1 Strains SL1, SL2 and SL3	99
4.3.2 Strain SL4	105
4.3.3 Strain B _A	108
4.3.4 Strain SL6	111
4.4 Substrate Specificity of Isolates	114
4.5 Biodegradation Studies	116
4.5.1 Time Course of Growth of Isolates on Carbazole	116
4.5.2 Detection of Metabolites of Carbazole Biodegradation	128
4.5.2.1 Achromobacter sp. strain SL1	128
4.5.2.2 Pseudomonas sp. strain SL4	136
4.5.2.3 Microbacterium esteraromaticum strain SL6	142
4.5.2.4 Catechol dioxygenation by carbazole-degrading isolates	148
4.5.3 Carbazole Biodegradation in Soil Microcosm	150
4.5.3.1 Physico-Chemical Properties of soil used in Microcosm Study	150
4.5.3.2 Population Dynamics of Isolates and Degradation of Carbazole	152
In soil	
4.6 Bacterial Diversity Studies	164
4.6.1 Isolation of Total DNA from MWO Polluted Soil	164
4.6.2 Analysis of 16S rDNA Clone Library of MWO Polluted Soil	166
4.6.2.1 Amplification of 16S rDNA Gene	166
4.6.2.2 Amplification of 16S rDNA Gene from Transformed Colonies	166
using Colony PCR	
4.6.3 Phylogenetic Analysis of the MWO Polluted Soil Clone Library	170

4.6.3.1 Proteobacteria	170
4.6.3.2 Bacteroidetes	171
4.6.3.3 Chloroflexi (Green Non-Sulphur Bacteria)	171
4.6.3.4 Acidobacteria	172
4.6.3.5 Firmicutes	172
4.6.3.6 Actinobacteria	172
4.6.3.7 Verrucomicrobia	173
4.6.3.8 <i>Planctomycetes</i> and <i>Chlorobi</i>	173
4.6.3.9 Spirochaetes and Chlamydiae	173
4.6.3.10 TM7 and OD1	174
4.6.3.11 Unclassified Bacteria	174
CHAPTER FIVE	
Discussion	189
CHAPTER SIX	
Summary	
6.1 Summary of Findings	204
6.2 Conclusion	205
Contributions to Knowledge	206
References	207
Appendix	233

LIST OF TABLES

Table	Page
2.1 Properties of Some Heterocyclic Aromatic Compounds	10
2.2 Some Carbazole-Degrading Bacteria	27
3.1 Ligation Reaction Mixture	91
4.1 Physico-Chemical Properties of the Soil Samples	96
4.2 Microbiological Characteristics of Soil Samples	98
4.3 Substrate Specificity of Carbazole-Degrading Isolates	115
4.4 Growth Kinetics of the Isolates on Carbazole	127
4.5 Physico-Chemical Properties of soil used in Microcosm Study	151
4.6 Bacterial Population Density during Soil Microcosm Study	154
4.7 Carbazole Degradation Rates of Isolates in Soil Microcosm	155
4.8 Diversity Indices of Bacterial Community in MWO Library	188

LIST OF FIGURES

Figure	Page
1.1 Common nitrogen heteroaromatic compounds found in fossil fuels	4
2.1 Molecular Structure of carbazole	9
2.2 Resonance structure of benzene	11
2.3 Aromaticity of pyrrole ring and dibenzo-series	13
2.4 Chemical structures of some Carbazole alkaloids	15
2.5 Chemical structure of 5,9-dimethyl dibenzo(c,g)Carbazole (DBC)	18
2.6 General schematic of aerobic aromatic degradation	20
2.7 Angular dioxygenation of dibenzofuran, Carbazole and dibenzo-p-dioxin	21
2.8 Biodegradative pathway of DD and DF via angular dioxygenation	23
2.9 Biodegradative pathway of dibenzothiophene via angular dioxygenation	26
2.10 Lateral dioxygenation of Carbazole at C3 and C4	29
2.11 Carbazole degradative pathway in <i>Pseudomonas resinovorans</i> CA10	31
2.12 Genetic structure of the gene cluster involved in Carbazole biodegradation	36
2.13 The genetic structure of <i>car</i> gene clusters in marine Carbazole-degrading bacteria	39
2.14 Organization of genes coding for different proteins of three component dioxygenase	41
systems in representative strains of bacteria capable of degrading aromatic compounds	
2.15 Diverse oxygenations catalyzed by CARDO	42
3.1 Map of Lagos State, Nigeria showing the sampling points used in this study	61
4.1 Nucleotide sequence (1383 bp) of Achromobacter sp. strain SL1	102
4.2 Nucleotide sequence (1383bp) of Achromobacter sp. strain SL2	103
4.3 Nucleotide sequence (1383 bp) of Achromobacter sp. strain SL3	104
4.4 Nucleotide sequence (1389 bp) of <i>Pseudomonas</i> sp. strain SL4	107
4.5 Nucleotide sequence (1374 bp) of S. Maltophilia strain B _A	110
4.6 Nucleotide sequence (1397 bp) of M. esteraromaticum strain SL6	112
4.7 Phylogenetic tree resulting from Neighbour Joining analysis of 16S rRNA showing	113
the phylogenetic positions of Carbazole-degrading strains SL1, SL2, SL3, SL4, SL6	
and B _A and related species.	
4.8 Population dynamics of Achromobacter sp. strain SL1 on Carbazole after 30 days of	118
incubation at room temperature.	

4.9 Gas enromatographic traces of n-nexane extract of recovered Carbazole from	119
control flask.	
4.10 Gas chromatographic traces of n-hexane extract of recovered Carbazole from the	120
culture flask of Achromobacter sp. strain SL1 after 30 days of incubation.	
4.11 Population dynamics of <i>Pseudomonas</i> sp. strain SL4 on Carbazole after 30 days	121
of incubation at room temperature.	
4.12 Gas chromatographic traces of n-hexane extract of recovered Carbazole from the	122
culture flask of <i>Pseudomonas</i> sp. strain SL4 after 30 days of incubation.	
4.13 Population dynamics of <i>M. esteraromaticum</i> strain SL6 on carbazole after 30 days	123
of incubation at room temperature.	
4.14 Gas chromatographic traces of n-hexane extract of recovered Carbazole from the	124
culture flask of M. esteraromaticum strain SL6 after 30 days of incubation.	
4.15 Population dynamics of S. maltophilia strain B_A on carbazole after 30 days	125
of incubation at room temperature.	
4.16 Gas chromatographic traces of n-hexane extract of recovered Carbazole from the	126
culture flask of S. maltophilia strain B _A after 30 days of incubation.	
4.17 GC-MS chromatograms showing the peaks of anthranilic acid (methylated) recovered	130
from resting cell culture ethyl acetate extracts of strain SL1 grown on carbazole	
(50 ppm) as carbon and energy source.	
4.18 GC-MS chromatograms showing the peaks of anthranilic acid (N-methyl, methyl ester)	131
recovered from growing cell culture ethyl acetate extracts of strain SL1 grown on	
carbazole (50 ppm) as carbon and energy source.	
4.19 GC-MS mass spectra data for (A) methylated anthranilic acid recovered from ethyl	132
acetate extract of resting cells culture of strain SL1 grown on carbazole (50 ppm)	
and (B) standard anthranilic acid (methylated).	
4.20 GC-MS mass spectra data for (A) anthranilic acid (N,N-dimethyl, methyl ester)	133
recovered from ethyl acetate extract of growing cells culture of strain SL1 grown	
on carbazole (50 ppm) for 5 days and incubated at 30°C and 300 rpm and (B)	
standard anthranilic acid (N,N-dimethyl, methyl ester).	
4.21 GC-MS mass spectra data for (A) anthranilic acid (N-methyl, methyl ester)	134
recovered from ethyl acetate extract of growing cells culture of strain SL1	

	grown on carbazole (50 ppm) for 5 days and incubated at 30°C and 300	
	rpm and (B) standard anthranilic acid (N-methyl, methyl ester).	
4.22	HPLC chromatograms of acetonitrile extracts of AN (anthranilic acid) cultures	135
	(50 ml CFMM with 0.3 mM AN) of strains SL1.	
4.23	GC-MS chromatograms showing the peaks of anthranilic acid (methylated) from	137
	ethyl acetate extract of resting cell culture of strain SL4 grown on carbazole	
	(50ppm) as carbon and energy source.	
4.24	GC-MS chromatograms showing the peaks of anthranilic acid (N,N-dimethyl,	138
	methyl ester) recovered from ethyl acetate extract of growing cell culture of	
	strain SL4 grown on carbazole (50 ppm) as carbon and energy source.	
4.25	GC-MS mass spectra data for (A) methylated anthranilic acid recovered from	139
	ethyl acetate extract of resting cell culture of strain SL4 grown on carbazole	
	(50 ppm) and (B) standard anthranilic acid (methylated).	
4.26	GC-MS chromatograms showing the peaks of anthranilic acid (N,N-dimethyl,	140
	methyl ester) recovered from ethyl acetate extract of growing cell culture of	
	strain SL4 grown on carbazole (50 ppm) as carbon and energy source.	
4.27	HPLC chromatograms of acetonitrile extract of AN (anthranilic acid) cultures	141
	(50 ml CFMM with 0.3 mM AN) of strains SL4.	
4.28	GC-MS chromatograms showing the peaks of anthranilic acid (methylated)	143
	recovered from ethyl acetate extract of resting cell culture of strain SL6 grown	
	on carbazole (50 ppm) as carbon and energy source.	
4.29	GC-MS chromatograms showing the peaks of anthranilic acid (N-methyl,	144
	methyl ester) recovered from ethyl acetate extract of growing cell culture of	
	strain SL6 grown on carbazole (50 ppm) as carbon and energy source.	
4.30	GC-MS mass spectra data for (A) methylated anthranilic acid recovered from	145
	ethyl acetate extract of resting cell culture of strain SL6 grown on carbazole	
	(50 ppm) and (B) standard anthranilic acid (methylated).	
4.31	GC-MS mass spectra data for (A) anthranilic acid (N-methyl, methyl ester)	146
	recovered from ethyl acetate extract of growing cells culture of strain SL6 grown	
	on carbazole (50 ppm) for 5 days and incubated at 30°C and 300 rpm and (B)	
	standard anthranilic acid (N-methyl, methyl ester).	

4.32 HPLC chromatograms of acetonitrile extract of AN (anthranilic acid)	147
cultures (50 ml CFMM with 0.3 mM AN) of strains SL6.	
4.33 Enzymatic transformation of catechol to cis, cis muconic acid by	149
lysate of carbazole-grown cells.	
4.34 GC-FID chromatogram of dichloromethane extract of residual carbazole	156
from Achromobacter sp. strain SL1-inoculated sterilized carbazole spiked	
soil at day 0 (A) and after 30 days of incubation (B).	
4.35 GC-FID chromatogram of dichloromethane extract of residual carbazole	157
from Pseudomonas sp. strain SL4-inoculated sterilized carbazole spiked	
soil at day 0 (A) and after 30 days of incubation (B).	
4.36 GC-FID chromatogram of dichloromethane extract of residual carbazole	158
from Microbacterium esteraromaticum strain SL6-inoculated sterilized	
carbazole spiked soil at day 0 (A) and after 30 days of incubation (B).	
4.37 GC-FID chromatogram of dichloromethane extract of residual carbazole	159
from strains SL1, SL4 and SL6 (SSC146)-inoculated sterilized carbazole	
spiked soil at day 0 (A) and after 30 days of incubation (B).	
4.38 GC-FID chromatogram of dichloromethane extract of residual carbazole	160
extracted from native soil carbazole spiked soil (NSC) at day 0 (A) and	
after 30 days of incubation (B).	
4.39 GC-FID chromatogram of dichloromethane extract of residual carbazole	161
from strain SL1-inoculated native soil carbazole spiked soil (NSC1) at	
day 0 (A) and after 30 days of incubation (B).	
4.40 GC-FID chromatogram of dichloromethane extract of residual carbazole	162
from strain SL4-inoculated native soil carbazole spiked soil (NSC4) at	
day 0 (A) and after 30 days of incubation (B).	
4.41 GC-FID chromatogram of dichloromethane extract of residual carbazole	163
from strain SL6-inoculated native soil carbazole spiked soil (NSC6) at	
day 0 (A) and after 30 days of incubation (B).	
4.42 Colony PCR of transformed clones.	168
4.43 Frequency bar chart of the clones found in the clone library of MWO	175
polluted soil.	

4.44	16S rkina gene-based phylogenetic tree based on the neighbor joining method	1//
	showing phylogenetic relationship of representative bacterial clones belonging	
	to the class Alphaproteobacteria from MWO polluted soil clone library.	
4.45	16S rRNA gene-based tree based on the neighbor joining method showing	178
	phylogenetic relationship of representative bacterial clones belonging to the	
	class Betaproteobacteria from MWO polluted soil clone library.	
4.46	16S rRNA gene-based phylogenetic tree based on the neighbor joining method	179
	showing phylogenetic relationship of representative bacterial clones belonging to	
	the class <i>Deltaproteobacteria</i> from MWO polluted soil clone library.	
4.47	16S rRNA gene-based phylogenetic tree based on the neighbor joining method	180
	showing phylogenetic relationship of representative bacterial clones belonging to	
	the class Gammaproteobacteria from MWO polluted soil clone library.	
4.48	16S rRNA gene-based phylogenetic tree based on the neighbor joining method	181
	showing phylogenetic relationship of representative bacterial clones belonging to	
	the phylum Bacteroidetes from MWO polluted soil clone library.	
4.49	16S rRNA gene-based phylogenetic tree based on the neighbor joining method	182
	showing phylogenetic relationship of representative bacterial clones belonging to	
	the phyla Firmicutes, Actinobacteria, and Verrucomicrobia from MWO polluted	
	soil clone library.	
4.50	16S rRNA gene-based phylogenetic tree based on the neighbor joining method	183
	showing phylogenetic relationship of representative bacterial clones belonging to	
	the phyla <i>Chloroflexi</i> and <i>Acidobacteria</i> from MWO polluted soil clone library.	
4.51	16S rRNA gene-based phylogenetic tree based on the neighbor joining method	184
	showing phylogenetic relationship of representative bacterial clones belonging to	
	the phyla Spirochaetes, Chlamydiae, Chlorobi and Planctomycetes from MWO	
	polluted soil clone library.	
4.52	16S rRNA gene-based phylogenetic tree based on the neighbor joining method	185
	showing phylogenetic relationship of representative bacterial clones belonging to	
	the phylum TM7 from MWO polluted soil clone library.	
4.53	16S rRNA gene-based phylogenetic tree based on the neighbor joining method	186
	showing phylogenetic relationship of representative bacterial clones belonging to	

"Unclassified Bacteria", Unclassified_*Proteobacteria* and Phylum OD1 from MWO polluted soil clone library.

4.54 Rarefaction curve of number of unique sequences recovered vs. number of clones sequenced for MWO clone library.

187

LIST OF PLATES

Pla	Plate	
4.1	Electrophoretogram showing the bands of 16S rDNA amplicons. Agarose (1%)	100
	was used. Lanes are indicated as –M, OneSTEP Marker 6 (λ/Sty I digest); Lane 1:	
	PCR amplicon of SL2 16S rDNA gene; Lane 2: PCR amplicon of SL6 16S rDNA	
	gene.	
4.2	Electrophoretogram showing the bands of 16S rDNA amplicons. Agarose (1%) was	101
	used. Lanes are indicated as -M, OneSTEP Marker 6 (λ/Sty I digest); Lane 1: PCR	
	amplicon of SL1 16S rDNA gene; Lane 2: PCR amplicon of SL3 16S rDNA gene.	
4.3	Electrophoretogram showing the bands of 16S rDNAamplicons. Agarose (1%) was	106
	used. Lanes are indicated as -M, OneSTEP Marker 6 (λ/Sty I digest); Lane 1: PCR	
	amplicon of SL4 16S rDNA gene.	
4.4	Electrophoretogram showing the band of 16S rDNA amplicon. Agarose (1%) was used.	109
	Lanes are indicated as –M, OneSTEP Marker 6 (λ/Sty I digest); Lane 1: PCR	
	amplicons of B _A 16S rDNA gene.	
4.5	Electrophoretogram showing the band of bacterial total DNA extracted from MWO	165
	polluted soil using FastDNA® SPIN Kit for Soil (MP Bio). Agarose (0.9%) was used.	
	Lanes are indicated as -M, OneSTEP Marker 6 (\(\lambda \) Sty I digest); Lane 1: Bacterial	
	total DNA.	
4.6	Electrophoretogram showing the band of 16S rDNA amplicon. Agarose (1%) was used.	167
	Lanes are indicated as –M, OneStep Marker 6 (λ/Sty I digest); Lane 1: PCR product	
	of 16S rDNA gene from bacterial total DNA extracted from MWO polluted soil	
	using 27F _{MOD} /1492R _{MOD} bacterial specific primers.	
4.7	Electrophoretogram showing the band of 16S rDNA amplicons after colony PCR of	169
	each of the transformed colonies. Agarose (1%) was used at 200 V for 30 min.	

LIST OF APPENDICES

Appendix	Page
I Media and Reagents	233
II Tables	242
III Mass Spectra	244
IV MWO Clone Library	259

GLOSSARY OF TERMS

Amplification

The process by which copies of a particular fragment of DNA is multiplied by subjecting it to cycles of temperature changes in a machine called thermal cycler in the presence of the enzyme called DNA polymerase.

Angular Dioxygenation

A novel mode of dioxygenation with high regioselectivity and specificity for the angular position. In this atypical oxidative attack, the carbon attached to the carbonyl group in 9-fluorenone or to heteroatoms in other compounds, and the adjacent carbon in the aromatic ring are both oxidized.

Anthropogenic

Pollutants produced and released into the environment as a result of human activities such as fossil fuel burning, agricultural practices and so on.

Bioaugmentation

Addition of pregrown microbial cultures, either genetically modified or not, into contaminated compartments to enhance cleanup process.

Biodegradation

The breakdown of a complex organic substance through biological processes that can result in minor loss of functional groups, fragmentation into smaller constituents, or complete breakdown to carbon dioxide and minerals.

Bioremediation

A spontaneous or managed process in which biological (especially microbiological) catalysis acts on pollutants to either mineralize it to carbon dioxide and water or transform it to simpler organic compounds.

Clone Library

A large collection of clones (obtained through amplification of a target gene from a metagenomic DNA and sequencing of the PCR products) harbouring amplicons with different sequences.

Colony PCR

A PCR technique for screening bacterial colonies directly to check for correct DNA vector constructs.

Dioxygenase

An enzyme that catalyses the incorporation of both atoms of molecular oxygen to aromatic ring leading to hydroxylation of the ring; another class of dioxygenases cleave such rings. Enrichment Technique A primary isolation technique, where a medium with specific and

known quantities that favour the growth of a particular microorganism of interest and inhibit the growth of others is

designed.

Meta Cleavage The use of a non-haem Fe(II) by extradiol enzymes to cleave aromatic

ring between a hydroxylated carbon and an adjacent non-

hydroxylated carbon.

Ortho Cleavage The use of a non-haem Fe(II) by intradiol enzymes to cleave aromatic

ring between two hydroxylated carbon atoms in the ring.

ABBREVIATIONS

CARDO Carbazole 1,9a-dioxygenase

CFMM Carbon-Free mineral medium

Cfu/mL Colony forming unit per mililitre

CTAB Cetyltrimethyl ammonium bromide

DMSO Dimethyl sulfoxide

EDTA Ethylene diamine tetraacetic acid

FID Flame ionization detector

GC Gas chromatography

HPLC High performance liquid chromatography

HUB Hydrocarbon utilizing bacteria

HUF Hydrocarbon utilizing fungi

IPTG Isopropyl-β-D-thiogalactopyranoside

LB Luria Bertani

MS Mass spectrometry

MSTFA 2,2,2-trifluoro-N-methyl-N-trimethylsilyl-acetamide

NSC Native soil + carbazole

NSC1 Native soil + carbazole + strain SL1

NSC4 Native soil + carbazole + strain SL4

NSC6 Native soil + carbazole + strain SL6

PCR Polymerase chain reaction

PTAH m-(trifluoromethyl)-phenyltrimethylammonium hydroxide

SDS Sodium dodecyl sulphate

SSC Sterilized soil + carbazole

SSC1 Sterilized soil + carbazole + strain SL1

SSC146 Sterilized soil + carbazole + strains SLI, SL4, SL6.

SSC4 Sterilized soil + carbazole + strain SL4

SSC6 Sterilized soil + carbazole + strain SL6

TA Total actinomycetes

TAE buffer Tris-acetate/EDTA buffer

TBE buffer Tris-borate/EDTA buffer

TE buffer Tris-EDTA buffer

TEG buffer Tris-EDTA/glucose buffer

THB Total heterotrophic bacteria

THF Total heterotrophic fungi

TNF Total nitrogen fixers

UV/Vis Ultraviolet/Visible

X-Gal 5-bromo-4-chloro-3-indoyl-β-D-galactopyranoside

ABSTRACT

Carbazole, an N-heterocyclic aromatic hydrocarbon is of environmental concern due to its persistence, recalcitrance, mutagenic and toxic activities. Degradation of carbazole has been reported since early 1990s, to lead to production of dead-end metabolites and hydroxylated carbazoles, which are released into the environment. However, angular dioxygenation of carbazole reported in very few bacteria genera, with hydroxylation at C1 and C9a carbons produces anthranilic acid and catechol as major metabolites, which are completely mineralized. Four bacterial strains with extensive degradation abilities on carbazole were isolated from three hydrocarbon-contaminated soils (Abandoned Coal Power Plant, ACPP; Mechanic Workshop, MWO and NEPA Substation, UNILAG, NESU) in Lagos, Nigeria. Physicochemical analyses of the soil samples indicate gross pollution of the soils with a high hydrocarbon content (157 g/kg) and presence of heavy metals (lead, nickel, cadmium). Phylogenetic analysis of the four strains indicated that they were Achromobacter sp. strain SL1 (AB646575.2), Pseudomonas sp. strain (AB646578.2), Microbacterium esteraromaticum strain SL6 (AB646579.2) and Stenotrophomonas maltophilia strain B_A (AB646574). The rate of degradation of carbazole by the four isolates, after 30 days of incubation, were 0.057, 0.062, 0.036 and 0.050 mg l⁻¹ h⁻¹ for strains SL1, SL4, SL6 and BA, respectively. Gas chromatographic analyses of residual carbazole, after 30 days of incubation, revealed that 81.3%, 85%, 64.4% and 76% of 50 ppm carbazole were degraded by strains SLI, SL4, SL6 and BA, respectively. GC-MS and HPLC analyses of the extracts from the growing and resting cells of strains SL1, SL4 and SL6 cultured on carbazole revealed anthranilic acid and catechol, which were not detected in strain BA under the same conditions. The three strains (SL1, SL4, SL6) degrade catechol via the ortho pathway producing cis cis muconic acid as established by UV-Vis spectroscopy. Microcosm experiments with sterile and native soils amended with 100 ppm carbazole indicated carbazole removal rates of 66.96%-82.16% in sterile soils and 19.19%-91.64% in native soils by the test organisms. All four strains utilized a wide range of polycyclic and heterocyclic aromatic hydrocarbons. Clone library analysis of 16S rRNA recovered four hundred and thirty seven clones from MWO soil that cut across thirteen different bacterial phyla as revealed by RDP-II and NCBI. The representative bacteria phyla identified from MWO soil, using clone library analysis, were *Proteobacteria*, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, Chlorobi, Spirochaetes, Chlamydiae, TM7 and OD1. The clone library coverage indicates 42% of the library is covered at the species delineation with Shannon index of 5.59. This study has established carbazole angular dioxygenation and mineralization by isolates from a tropical environment. It also revealed the presence of novel bacterial genera contributing to natural attenuation of hydrocarbon pollutants in soil through clone library analysis.