DYNAMIC ANALYSIS OF SOIL -TOOL INTERACTION IN HYDRAULIC EXCAVATION

 \mathbf{BY}

ALLI, OLUWAFEMI ADEWALE

B.Eng.(Akure), M.Sc. (Ibadan), MNSE, R.Eng (COREN) (039047008)

THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES,
UNIVERSITY OF LAGOS, IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

IN

SYSTEMS ENGINEERING

DEPARTMENT OF SYSTEMS ENGINEERING
FACULTY OF ENGINEERING
UNIVERSITY OF LAGOS, NIGERIA

AUGUST 2011

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION

This is to certify that the Thesis:
"DYNAMIC ANALYSIS OF SOIL-TOOL INTERACTION IN HYDRAULIC
EXCAVATION"

Submitted to the School of Postgraduate Studies University of Lagos

For the award of the degree of

DOCTOR OF PHILOSOPHY (Ph.D.)

is a record of original research carried out

By:

ALLI, Oluwafemi Adewale In the Department of Systems Engineering - Shellellelle ALLI, OLUWAFEMI ASEWALE **SIGNATURE** AUTHOR'S NAME DATE V.O.S. Olumbyo 1ST SUPERVISOR'S NAME **SIGNATURE** O. Ibidam -Obe 12/12/11 2ND SUPERVISOR'S NAME DATE 12-12-11 3RD SUPERVISOR'S NAME **SIGNATURE** DATE 12/12/2011 O. S. ASAOLU 1ST INTERNAL EXAMINER SIGNATURE DATE J. S. Aji boye 12/12/2011 2ND INTERNAL EXAMINER **SIGNATURE** DATE J.O. 0Ja **EXTERNAL EXAMINER** E.E. IKPOMMWOSA

SPGS REPRESENTATIVE

DECLARATION

I declare	that tl	his thesis is a	a record of the re	esearch	work carrie	ed out by n	ne. I als	so certif	y that
neither th	is noi	r the original	work contained	therein	has been a	accepted in	any pr	revious	application
for a degr	ee.								

ALLI, O.A.	DATE
All sources of information are specifically acknowledged by means of reference	ces.

DEDICATION

This research work is dedicated to the Almighty God for sustaining me throughout the course of this doctoral work from the beginning to the end.

ACKNOWLEDGEMENT

I would like to express my profound gratitude to my supervisors: Distinguished Professor V.O.S. Olunloyo, Prof. O. Ibidapo-Obe and Dr. C.A. Osheku for their relentless effort, unfailing love and extreme commitment in providing an enabling environment, mental and physical resources required for this research work. I sincerely appreciate the immense contribution, guidance and unfailing support rendered in the course of this doctoral work.

My special regards goes to the former and current Head of Department, Prof. O.A. Fakinlede and Dr. O.S. Asaolu for their untiring effort, encouragement and support especially in administrative issues related to this research. I wish to specially appreciate the PG coordinator, Dr. T.A. Fashanu for his commitment in ensuring the prompt processing of results at the School of Postgraduate Studies. Your support and encouragement at all times is well appreciated.

I wish to appreciate all members of staff of Systems Engineering Department for their encouragement and kind assistance at all times. Also, my regards goes to all my senior colleagues, friends and well wishers in the Faculty of Engineering and University of Lagos at large for their support at one time or the other in the course of this work. In particular, my appreciation goes to Prof. M.A. Salau, the Dean, Faculty of Engineering, University of Lagos for his unfailing support and timely encouragement in the course of this doctoral research.

Many thanks to members of Distinguished Professor Olunloyo's research team for their advice during and after Saturday meetings. Your valid criticisms are highly valued as this has positively influenced and enhanced my drive for excellent research. In particular, I thank Engrs. A.O. Adelaja, S.I. Kuye and O.Y. Ogunmola for their support and encouragement during the period of this research.

Special regards to my family members for always being there for me. I specially thank my darling wife, love and friend, Mrs. Olubukola Oluwatoyin Alli for her consistency, understanding, care and regular support. In particular, you are highly appreciated for providing an enabling environment during the course of this study. "Many daughters have performed virtuously but thou excellest them all". May the Lord reward you abundantly. I also thank my children, Victor and Victoria for standing by and bearing with me throughout the research

period. Many thanks to my late father, Alhaji M.A. Alli; mother, Mrs. S.B. Alli and my siblings. I thank you for your prayers and moral support. My regards also go to my parents-in-law Mr. and Mrs. T.O. Kolawole and my wife's siblings for their prayers and encouragement during this research work.

My warm regards goes to my parents in the Lord, Bishop and Rev. (Mrs) Mike Bamidele, the Pastorate and entire members of Victory Life Ministries International for their prayers, encouragement and counsel. I am also indebted to my prayer partners and friend: Femi Fadairo and Victor Jeje among others. I sincerely appreciate the Pastorate and members of Divine Connection Chapel, Ikeja for their prayer support. May God bless you all.

In conclusion, I give thanks to the almighty God, the Alpha and Omega, the beginning and the end, for his greatness, goodness, loving kindness, tender mercies, unfailing love, provision, sustenance and for all He has done to make this dream a reality.

TABLE OF CONTENTS

CHAPTER ONE

INTRODUCTION

1.1	Background of the study	1
1.2	Excavating Machines	3
1.2.1	Backhoe	3
1.2.2	Dragline Excavator	4
1.2.3	Wheel Tractor-Scraper	5
1.2.4	Power Shovel	6
1.2.5	Bulldozer	7
1.2.6	Hydraulic Based Track Excavator	8
1.2.7	Underground Mine Loader	9
1.3	Need for Automation	9
1.4	Statement of Problem	10
1.5	Objectives of Study	11
1.6	Limitation/Scope of the study	12
1.7	Overview of Thesis	12
1.8	Significance of the Study	13
1.9	Definition of Basic Terms	14
1.10	Brief Historic Development of Mining	14
CHAI	PTER TWO	
LITE	RATURE REVIEW	
2.0	Preamble	19
2.1	Excavator Kinematics	19

2.2	Excavator Dynamics	20
2.3	Fragmented Rock Excavation	21
2.4	Excavation Planning	22
2.5	Teleoperation	23
2.6	Control Design	25
2.7	Towards Automation	27
2.8	Related Researches in Excavation	
CHAI	TER THREE	
	AMIC ANALYSIS OF SOIL – TOOL INTERACTION IN HYDRAULIC AVATION	
3.1	Preamble	37
3.2	Excavation Model	37
3.2.1	Excavation Model Assumptions	39
3.3	Dynamic Equations	39
3.4	Acceleration Equation for all the Links	49
3.5	Transmitted Force Equation	49
3.6	Cutting Force Equation	51
CHAI	PTER FOUR	
ANAI	CYTICAL PREDICTION OF SCOOPED VOLUME DURING HYDRAULIC	
EXCA	AVATION	
4.1	Preamble	60
4.2	Analysis of Scooped Volume	60

CHAPTER FIVE

ANALYTICAL MODELLING OF BUCKET TRAJECTORY DURING HYDRAULIC EXCAVATION

5.1	Preamble	68
5.2	Derivation of Analytical Expression	68
CH	APTER SIX	
RES	SULTS AND DISCUSSIONS	
6.1	Simulation Results	72
6.2	Simulation Results of the General Profile of the Cutting Force	72
6.3	Optimum Results of Maximum Cutting Force and Adjustable Link Length $r_{B_1/C}$	76
6.4	Simulation Profile of the Cutting Force and Adjustable Link Length r_{A/B_1} 77	
6.5	Optimum Results of Maximum Cutting Force and Adjustable Link Length $r_{\scriptscriptstyle A/B_1}$	80
6.6	Optimum Results of Analytical Prediction of Scooped Volume	82
6.7	Simulation Results of Analytical Modeling of Bucket Trajectory	87
6.8	Discussion of Results	93
CH	APTER SEVEN	
SUN	MARY AND FINDINGS, CONTRIBUTION TO KNOWLEDGE	
7.1	Summary and Findings	99
7.2	Contribution to Knowledge	100

REFERENCES	101
APPENDIX I	113
APPENDIX II	119
APPENDIX III	120
APPENDIX IV	122
APPENDIX V	124
APPENDIX VI	125
APPENDIX VII	127

LIST OF FIGURES

FIGURE

1.	Excavator loading a truck with soil in a typical mass excavation work scenario	3
2.	Backhoe	4
3.	Dragline Excavator	5
4.	Wheel Tractor-Scraper	6
5.	Wheel Tractor-Scraper in a typical work scenario	6
6.	Power Shovel	7
7.	Bulldozer	8
8.	Hydraulic Excavator	8
9.	Underground Mine Loader	9
10a.	Excavation Model	38
10b.	Force Diagram for Excavation Model	38
11.	Static equilibrium analysis using an approximation of the failure surface	57
12.	Profile of the excavator blade cutting through a medium	68
13.	Typical profile of cutting force, link length and angular velocity for the case r_{A/B_1} fixed at $1.0m$ and $r_{B_1/C}$ moving from $1.7 - 2.9m$	73
14.	Typical profile of cutting force, link length and angular velocity for the	
	case r_{A/B_1} fixed at 1.4m and $r_{B_1/C}$ moving from 1.7 - 2.9m	74
15.	Typical profile of cutting force, link length and angular velocity for the	
	case r_{A/B_1} fixed at $1.8m$ and $r_{B_1/C}$ moving from 1.7 - 2.9 m	74
16.	Typical profile of cutting force, link length and angular velocity for the	

		75
	case r_{A/B_1} fixed at 2.2m and $r_{B_1/C}$ moving from 1.7 - 2.9m	75
17.	Typical profile of cutting force, link length and angular velocity for the	
	case r_{A/B_1} fixed at 2.6m and $r_{B_1/C}$ moving from 1.7 - 2.9m	75
18.	Typical profile of cutting force, link length and angular velocity for the	
	case r_{A/B_1} fixed at 2.6m and $r_{B_1/C}$ moving from 1.7 - 2.9m	76
19.	General profile of maximum cutting force and link length $r_{B_1/C}$ when	
	r_{A/B_1} is fixed and $r_{B_1/C}$ is moving from 1.7 - 2.9m	76
20.	Typical profile of cutting force, link length and angular velocity for the	77
	case $r_{B_1/C}$ fixed at 1.7m and r_{A/B_1} moving from 1.0 - 2.7m	77
21.	Typical profile of cutting force, link length and angular velocity for the	
	case $r_{B_1/C}$ fixed at 2.0m and r_{A/B_1} moving from 1.0 - 2.7m	77
22.	Typical profile of cutting force, link length and angular velocity for the	
	case $r_{B_1/C}$ fixed at 2.3m and r_{A/B_1} moving from 1.0 - 2.7m	78
23.	Typical profile of cutting force, link length and angular velocity for the	
	case $r_{B_1/C}$ fixed at 2.6m and r_{A/B_1} moving from 1.0 - 2.7m	78
24.	Typical profile of cutting force, link length and angular velocity for the	
	case $r_{B_1/C}$ fixed at 2.7m and r_{A/B_1} moving from 1.0 - 2.7m	79
25.	Typical profile of cutting force, link length and angular velocity for the	
	case $r_{B_1/C}$ fixed at 2.9m and r_{A/B_1} moving from 1.0 - 2.7m	79
26.	General profile of maximum cutting force and link length r_{A/B_1} when $r_{B_1/C}$ is fixed	1
	and r_{A/B_1} is moving from 1.0 - 2.7m	80
27.	Profile of Cutting force, cutting angle and time $(r = 3.0m)$	81
28.	Profile of Cutting force, cutting angle and time $(r = 2.7m)$	81
29.	Profile of Cutting force, cutting angle and time $(r = 0.6m)$	82

30.	Profile of maximum scooped volume and angle of inclination, α_2 (length=0.5m)	84
31.	Profile of maximum scooped volume and angle of inclination, α_2 (length = 1.0m)	84
32.	Profile of maximum scooped volume and angle of inclination, α_2 (length=1.5m)	85
33.	Profile of maximum scooped volume and angle of inclination, α_2 (length=2.0m)	85
34.	Profile of maximum scooped volume and angle of inclination, α_2 (length=2.5m)	86
35.	Profile of maximum scooped volume and angle of inclination, α_2 (length=3.0m)	86
36.	Maximum scooped volume and angle of inclination, α_2 with varying length r_{A/B_1}	87
37.	Profile of bucket trajectory for a free swing $(d=0)$	89
38.	Profile of bucket trajectory through a medium $(d=0.3m)$	89
39.	Profile of bucket trajectory through a medium $(d=0.6m)$	9(
40.	Profile of bucket trajectory through a medium $(d=0.8m)$	90
41.	Profile of bucket trajectory through a medium (1.0m)	91
42.	Profile of bucket trajectory through a medium $(d=1.3m)$	91
43.	General profile of bucket trajectory $(d = 0 - 1.3)$	92

92

General profile of bucket trajectory

44.

APPENDIX FIGURES

Appendix Figu	ure 1.	Vector notation	for link	OA	113
Appendix Figu	ure 2.	Vector notation	for link	AB_1	113
Appendix Figu	ure 3.	Vector notation	for link	B_1C	114
Appendix Figu	ure 4.	Vector notation	for link	CD	115
Appendix Figu	ure 5.	Vector notation	for link	DE_2	116
Appendix Figu	ure 6.	Vector notation	for link	B_1B_2	116
Appendix Figu	ure 7.	Vector notation	for link	B_2E_1	117
Appendix Figu	ure 8.	Vector notation	for link	E_1E_2	118

LIST OF TABLES

TABLE

1.	Chronological Development of Mining Technology	15
2.	Raw Materials Distribution in Nigeria	16
3.	Simulation Parameters for General Profile of Cutting Force	72
4.	Table of Parameters used for Predicting Scooped Volume	82
5.	Parameters of Simulation for Bucket Trajectory	87

NOTATIONS

$ec{\omega}_{\scriptscriptstyle A/O}$	- Angular velocity of point A relative to O
$ec{\omega}_{\scriptscriptstyle B_1/O}$	- Angular velocity of point B_1 relative to O
$ec{\omega}_{\scriptscriptstyle B_2/O}$	- Angular velocity of point B_2 relative to O
$ec{\omega}_{\scriptscriptstyle E_1/O}$	- Angular velocity of point E_1 relative to O
$ec{\omega}_{\scriptscriptstyle E_2/O}$	- Angular velocity of point E_2 relative to O
$ec{\omega}_{\scriptscriptstyle C/O}$	- Angular velocity of point C relative to O
$ec{\omega}_{\scriptscriptstyle D/O}$	- Angular velocity of point D relative to O
$ec{\omega}_{\scriptscriptstyle B_1/A}$	- Angular velocity of point B_1 relative to A
$ec{\omega}_{\scriptscriptstyle B_2/B_1}$	- Angular velocity of point B_2 relative to B_1
$ec{\omega}_{\scriptscriptstyle E_1/B_2}$	- Angular velocity of point E_1 relative to B_2
$ec{\omega}_{\scriptscriptstyle E_2/E_1}$	- Angular velocity of point E_2 relative to E_1
$ec{\omega}_{\scriptscriptstyle C/B_1}$	- Angular velocity of point C relative to B_1
$ec{\omega}_{\scriptscriptstyle D/C}$	- Angular velocity of point D relative to C
$ec{lpha}_{\scriptscriptstyle A/O}$	-Angular acceleration of point A relative to O
$ec{lpha}_{\scriptscriptstyle B_1/A}$	-Angular acceleration of point B ₁ relative to A
$\vec{\alpha}_{\scriptscriptstyle B_2/B_1}$	-Angular acceleration of point B_2 relative to B_1
$\vec{\alpha}_{\scriptscriptstyle E_1/B_2}$	-Angular acceleration of point E_1 relative to B_2
$ec{lpha}_{\scriptscriptstyle E_2/E_1}$	-Angular acceleration of point E_2 relative to E_1
$ec{r}_{O/A}$	-Displacement of point O relative to A
\vec{r}_{A/B_1}	-Displacement of point A relative to B_1
\vec{r}_{B_1/B_2}	-Displacement of point B_1 relative to B_2

\vec{r}_{B_2/B_1} -Displaceme	nt of point B_2 relative	to B ₁
---------------------------------	----------------------------	-------------------

$$\vec{r}_{E_1/B_2}$$
 -Displacement of point E_1 relative to B_2

$$\vec{r}_{B_1/C}$$
 -Displacement of point B₁ relative to C

$$\vec{r}_{B_2/E_1}$$
 -Displacement of point B₂ relative to E₁

$$\vec{r}_{E_1/E_2}$$
 -Displacement of point E₁ relative to E₂

$$\vec{r}_{C/D}$$
 -Displacement of point C relative to D

$$\vec{r}_{D/E_2}$$
 -Displacement of point D relative to E_2

 $F_{\scriptscriptstyle T}$ -Transmitted force due to the links

 $F_{\rm C}$ -Cutting force of the excavator bucket

 m_b -Mass of excavator bucket

 a_L -Acceleration due to the links

 \hat{e}_c -Unit vector

 F_s -Scooping force

 R_s -Resistance due to shear

 τ_s -Shear strength

 A_b -Area of excavator bucket

d -Depth of cut

v_s -Scooped volume

 v_b -Volume of excavator bucket

 ρ_s -Density of soil

W - Weight of the moving soil wedge

 L_t -Length of the tool

 L_f -Length failure surface

 ϕ -Angle of soil-soil friction

c -Cohesion of soil

c_a - Adhesion between the soil and blade

 δ - Friction between the metal and the blade/the soil-tool friction angle

ho - The rake angle

 ρ_{sl} - Soil density

 β - The failure surface

Q - Surcharge pressure

R - Force resisting movement of the wedge

F - Resistive force experienced at a blade

 v_T - Transmitted velocity

g - Acceleration due to gravity

 $a_{\scriptscriptstyle (h)T}$ - Transmitted acceleration in the horizontal plane

 $a_{(v)T}$ - Transmitted acceleration in the vertical plane

 v_{y} - Velocity in the vertical plane

 v_x - Velocity in the horizontal plane

t - Time

x - Bucket displacement in x- axis

y - Bucket displacement in y- axis

 ρ_b - Density of bucket

 $F_{T(h)}$ -Transmitted force in the horizontal direction

 η -Cutting angle

 θ_A -Angle of unit vector $\hat{e}_{B_1/C}$

 $heta_{\scriptscriptstyle B}$ -Angle of unit vector $\widehat{e}_{\scriptscriptstyle B_1/B_2}$

 $\theta_{\scriptscriptstyle C}$ -Angle of unit vector $\widehat{e}_{\scriptscriptstyle B_2/E_1}$

 $\theta_{\scriptscriptstyle D}$ -Angle of unit vector $\hat{e}_{\scriptscriptstyle C/D}$

 θ_1 - $O\widehat{A}B_2$

 θ_2 - $A\widehat{B}_2E_1$

 α_1 - $B_2 \hat{A} B_1$

 α_2 - $B_2 \hat{B}_1 A$

 α_3 - $E_1 \hat{B}_1 C$

 α_4 - $E_1\hat{C}D$

 α_5 - $D\hat{E}_2E_1$

 α_6 - $E_2 \hat{E}_1 D$

ABSTRACT

This work improves upon earlier work in the literature concerning the motion of an excavator blade cutting through a medium with a flat surface. In particular, it involves the development of a robust analytical scheme for determining the motion of the various links of the excavator based on the geometrical parameters of the excavator and the transmitted and cutting forces of the excavator bucket. Furthermore, the scheme which involves the use of rigid body dynamics with analytical geometry and circular functions provides a generalized model from which the effect of various geometrical parameters on the cutting force for excavation can be captured in different scenarios. The study also examines the behaviour of the cutting force both in free swing and also when cutting through a medium with mitigating parameters of density, shear, cohesion and adhesion. Our model can also predict the volume of scooped material as well as the resulting bucket trajectory. As part of the validation exercise, simulations were carried out using MATLAB software in studying the various effects of the identified parameters in the excavation of granulated material such as dry sand. Use of the results obtained from our analysis can serve as a basis for enhancement of design parameters in the search for optimized excavation.

Keywords: dynamic analysis, soil-tool interaction, hydraulic excavation, cutting force.