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ABSTRACT
In this contribution we present radix - 7 signed digit
element finite fields as a gateway to multiple-value logic
public key cryptographic systems design. We also
construct signed digit Galois Field SGF(72). A radix - 7
signed digit element finite field multiplication circuit is
implemented using complementary pass-gate derived 7-
value. T-gate (1] .

Index Terms- Signed digit., Element, finite fields,
Arithmetic , Multiple-valued logic, diagonal element
summation

1. INTRODUCTION
In most real life applications negative numbers are
essential and Signed Digit Number (SDN) system {2]
lends itself to parallel system architecture and simplifying
high-speed device design. Symmetrical signed digit sets
have also been used to .develop Multiple- Valued Logic
(MVL) systems that fronts: better noise margin, reduced
signal lines count, reduced complexity of interconnection,
fewer control lines and high device speed

Recently ad vances in integrated circuit design have also
continued to foster development of novel circuits in
redundant number system resulting in high-speed
conventional •.uid finite field biunry aritluuetic circuits.
Kamevame et al; suggested radices> 2. ·t 5 SD
arithmetic circuits from bi-directional current mode MVL
basic building blocks for a wide range of applications
(not including) finite field arithmetic circuits). This paper
is an overview of radi:x - 7 signed digit number system ill
finite field arithmetic and present the design ot' signed
digit element finite field multiplication circuit from Yet
another MVL systems building block - the
complementnrv 1)a::1::1 gate derived 7-valued T - gate. Our
choice of radix- 7 is informed bv the fact that: i) Radix-
7 multiple value coded signed - digit mnnber system is
essentially the symmetrical quaternary signed digit set

( 3,2j·,O.L2.3 :. This would simplify conversion
procedures if need he. ii) It is also applicable to a infinite
set of cryptographic-fnendlv prime moduli that has 7 as
primitive root p . .iii) I' = 7 is itself a finite field.

The rest of this paper is organized as follows: In section
II we present the concept of radix - 7 Signed digit
element Galois Fields SGF(7m). Synthesis of signed digit
element finite field multiplication MVLcircuit is
presented in section ill. Conclusion is given in section
IV.

1-4244-1236-6/07/$25.00 © 2007 IEEE

2. SIGNED- DIGIT - ELEMENT FINITE FIELDS
The kernel to security in cryptographic systems is the
imractabilityof'very large integer factors participating in
arithmetic operations but a major issue in their hardware
implementation is the existence of an efficient Galois
field arithmetic. In this section we proceed to show that
radix - 7 signed digit aritlunetic is also applicable in
finite fields. That high-speed signed digit element finite
field arithmetic circuits are realize able from 7-valued T-
gate radix - 7 SD adders and multipliers circuits,

2.1 Basic properties . .
Basic properties of finite fields] shows that finite or
Galois fields {6,7] are algebraic structures with finite
prime number of elements in which the arithmetic
operations: addition, subtraction multiplication and
division are closed. Usually the field representation
defmes the element paitern and such representations are
chosen to provide efficient field arithmetic operation.
Arithmetic in radix - 7 signed digit number system [9] is
also very efficient hence, taking the restricted
symmetrical radix - 7 SD set {-3,-2.-1,O,l,2,3} as MVL
variables recoded rearrangement of the elements of
GF(7), basic arithmetic operations of a Signed digit
element GF(7) which may be described as in equation
(1),

{
I :!(a,e~,) (/}

(;, = 1; if! a, e J),) a ...... t l )
o : ifotherwise

r, =(a,ep,)-7J,
"here: the operator e £: +, - _.j i and a,. b, 1:, £:-3.-
2.-1.0.1.23) are also closed with additive and
multiplicative elements of 0 and J respectively.
Consequently. we advance the following theorems:

. Theorem 1 If the setD = (0,1,2,3, .... ,p-l) in which p is
a prime, form the prime field GF(p) such that addition;
subtraction, multiplication and division operations are
closed, then, the set D' = (-(P-l)/2, -(p-2)12, ... ,-1,0,
1,2,3, .... (p-2),p-l)) also form the Signed digit element
prime field (SGF(p)) in which radix - p SD addition;
subtraction, multiplication and division operations are
closed.
Theorem 2. If a finite field of characteristic p, for a non-
negative integer of n, has ]I' elements, for which a unique
finite field of order p" exist 111en a signed digit element
finite field of characteristic p , for a non- negative integer
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n, has pn signed digit elements for which a unique field of
order pn exist

That is, if the field GF(p) exist then field SGF(p) exist
and if field GF(p") exist then SGF(pn) exist Also the
elements of SGF(p) representable, either in polynomial
or in normal basis form are MVL variables and thus can
be stored as MVL strings. We illustrate further the
existence of signed digit element Galois fields by
constructing SGF(pn).

2.2 Constructing "Signed digit element finite field
SGF(7"')

Definitions: Let :I. be a single independent restricted
radix r SDN variable such that l.

€{ (a -lHa - 2} ... ,2:,T,O,1,2,...(a- 2), (a -I)} with

a ~ r ,.~IIand I, - some coefficients in the restricted

radix r signed digit number system field. Then we define:

i) A degree 111 signed digit polynomial Qrx) us:
111-1

Qtx) = L .lx' provided
,=tl

x €i (a -1}, ...,2:,T,O,1,2,..... ,., (a -I)},

l, - a restricted radix - r SDN system string

ii) A primitive SD Polynomial is tile least 3D
Polvnomial of primitive element u.. of the
extension field SGF(pill) and

a E: i(a -1l,. ..,2:,T,O,I,2,..... ,., (a -I)}.
If a. is an element of SGFtpill) and u.. is a root in
SGF( pll.l) then any OJ can he represented as
J=!', -' - -10 ' !' '} .ta a- .a La.a' a . Reducing
these elements by a reduction modulo Polyncmial enable
us to represent elements of SGF (put) in Polynomial
basis.

iii) A SD :irreducible Polynomial of degree m is any
non-constant SD Polynomial that cannot be
factored.

Thus taking a p(x) as an .irreducible (monic) signed digit
polynomial [5] of degree mover F7 such that

p(x) = x'" + fa"'-tx"'-': la, E {3.1.I.0..l23}
1=1

for i= O.1.}..... 111-1 ) .•...•••••.•...........• (2 )

Then we refer to the universal set of such polynomials
ptx) of degree less than mover F7 as a signed digit
element finite field F7m , designated with SGF(7"') and
can be represented as

SOF(?") = :alll.1x'll-I +alli.:x'll': + + <l:x:+a.x' +a.,

a, x € :-3.3.1.I.O.L2.3} : (3 ).

Similar to positive element fields, the field elements of
SGF(7"') are denoted by symmetrical quaternary signed
digit strings of length m so that SGF(7"') can be )
alternatively represented as

SGF(l")

{3.1.I.O.1.2.3} ) ......... (4)

That is a SGF(7"'), m>O contains 7'" elements each of
which can be uniquely represented with a degree up to m-
1 signed digit polynomial p{x) in the form:

tx) - a "llJ·1+a ,.JU': + + ~ ,.: +n ,.I +n 'J ,.Jp.\ - Ill-t.\.. lU-::-lrr. •... _.. -... u.>} U!.'\.. Ul)' J.- ."l..

e {3.2.l.0.U.3}

To construct a signed digit element tillite field is to find
monic irreducible signed digit polynomials qrx) E:.
SGF(7Jll) of degree 111 ~ witn coefficients in SGF(7ill).
That is. we followed the brute force method out lined in
[7]. List out all 3D monic Polynomials of degree ill in
SGF(7JlIleX] with constant terms and for each one of the

listed substitute x E: : J.2.l.b.l.2.3}.The reducible
Polynomials evaluates to zero. otherwise the Polynomial
is irreducible. We found ::1. l l ? and 57580 radix 7
signed digit monic irreducible polynomials corresponding
to degrees }. 3 and 7 and constructed the corresponding
finite fields for degree 2 and 3.

3 SIGNED DIGIT ELEMENT FINITE FIELD
MULTIPLICATION CIRCUIT

We now present the synthesis of a radix 7 SD element
finite field multiplication circuit. To enhance device
speed, we simultaneously generate and accumulate all
partial products to formed an intermediate product and
reduce this by some modulo. Hence the design of a radix
7 SD element finite field multiplication unit is essentially
1he implementation of parallel radix 7 SD addition and
multiplier modules. Consequently, let aCt) and b(t) be
two radix - 7 signed digit finite field elements in the
polynomial basis representation and WCt)be some monic
irreducible polynomial, such that

aCt)= ak.l·! + ak.i,·2 + + a1t + ao

b(t) = br-.!f·!+b,.'2f·2+ +~t + bo

v.{t) = t' +W],-lt'·!+ w]"Zt'·2+ + Wit + Wo

where : att). bit) and wtt) € SGF(7'll)

3.1 Signed digit element finite field addition

,,-J
a(t)+b(t) =C(t)= L c,t' .... (5)

,=..

where c. = a, + b, -70J is implemented using 7-value T-
gates as a radix-? SD full adder and has a speed of
O.9!I..':ec. rims adding coefficient component-wise in
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restricted radix 7 SDN system arithmetic without the
carry, performs addition operation of two radix 7 signed
digit finite field elements. A signed digit element finite
field parallel addition circuit is simply a row of n radix 7
SD full adders with unutilized carry-ins and carry-outs.

3.2 igned digit element finite field muJtipliC:ltioD

A signed digit finite fidJ elements multiplication
operation involves the multiplication of polynomial basis
represented multiplier am and multiplicand bn) in
restricted rad ix - 7 signed ill!!it number system
component wise with ignored product digit carry p":..u and
computing the residue modulo some given irreducible
polvuomial \\1 t). Thus in designing a signet! digit tield
elements multiplication architecture we employed a
'lxmillel multiplv/od sut tract coefficient method. The
multiplication of al t) and hi t ) is expressed as

a(t) * b(t I a( t) . h( t I moll \\1 t I
k-I[2:>. b(t)] moll \\111 (6)
,=II

= (at.1 r--t( b,t' + b,otr-t + .... bl t + b.d + <lL_:r--:( b,t' + 0,-
tr-I + .... btt+ b,,)

+ .... :hlltfb,t' + b._Ir-1 + ... b1t+ b.,I+ a"fb,t' + b._
It'-I + .... btt+ bll)) mod \\11) ...

k-I

{La"tk-lI(b,_/-1 +b,_:tr-: +...
. ... (71

..... +bl +b,,)mod w(t)} mod w(t)

k ,-I

aHI * b(tl = : Ld,t' J mod \\lt1:mod \\111
,::41

k , -I lI;k-Lm=I-1

L( L{Jk_IIhr_", -71'''",") mod
I='U H=11 m~1

\\H): moll \\11) (8)
L II (I. od Th\Yuere P nm = P ij IS a pr uct carry. e

tennak_lI.b,_III - 7P:,:" represents
multiplication operation of two restncted radix - 7 :-:D.
It is also hardware implemented (using 7-\'alue T-gates)
with a speed of 0.6 usee . Equation (~I appears
complicated hut a second look at eqnatk n (6) shows that
operntion in bracket can be performed simply bv writing
the coefficients of the umltiplicand Ixo in rows that
terminate with a corresponding coefficients of the
multipliers a{n as in equation (9).

br-l br-~ br-3·.. bl bu llt-
blot h._: h,_, hl b. .1\;;_:

1\-1 h._: b._'- b, h, at

b'_1 b•.: b._, bt h., a"

Next multiplier-coefficient-column elements ak-z, (z
=1,2, ... k) radix - 7 signed digit-wise multiply
corresponding multiplicand-coefficient-row elements {b;
V> }z, v = (r,(r-l),(r-2), ... ,2,1) to produce the partial
product-coefficient matrix of equation (10). Intermediate

( WI

- product coefficients Pk . are obtained h~ carey-free

radix 7-signet! digit summation of the diagonal dements
from the left. These nre finallv reduced modulo \\1 t) to
obtain the product of am * btn nmltiplication operation.
The multiplier coefficient-cohuuu element positioning
may start \yith the junior coefficient (/" and end with the
senior. Clt.!. In this case. the summation of diagonal
elements starts from the right. However. in either case the
same number of diagonal elements and the same diagonal
elements adds up to form any particular intermediate-

product coefficient p~,_,'i.e:

Pk ,_, = (L (Ok-II .h,._", -7 P~m» ( 111
1=0

where /I = O.1.3 .... k-l (/1/(/ 1I/=O.1.3 ... r-I

For the reduction operation. while some employ direct
division b\ the reduction modulo \\1 t I. others f since ill
field arithmetic. addition ami subtraction operations are
similar ~ sug.g.e:.1e...1an adJ-shift interleaved subtraction
[3_8] ~1rateg:~'. In our nlgorithm of parallel radix signal
Jigit multiplication of OP<!f:U1J coefficients and
simultaneous formation of intermediate- product
coefficieu ts h: diagonal elements suuunatiou, the
reduction phase IS accomplished by repeatedly
component-wise radix - 7 signed digit subtraction
operation of the reduction modulo \\(1). from the
intermediate product coefficients since only a verv small
and negligible time is expended ill the fust phase. The
subtraction starts with the highest PO\Y<!fterm of the
independent variable t. of the intermediate product
IPU) polvuomial \\ilh gradual sliding of tile reduction

polvuomial l1'(t). to the right until IP(t) < 11'( r) .

Using tile radix 7 SD adders and multiplier units as basic
building blocks we realize a radix 7 8D finite field
multiplication circuit that performs tile field
multiplication operation a( t I* b(nmodulo "H I where;

a(t)=a~t~+a:t:+al+a" .
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The circuit acquired a very high operational speed when
multiplier-coefficient-column elements were
simultaneously multiplied by corresponding
multiplicand-coefficient-row elements with simultaneous
accumulation of partial products to form the intermediate
product coeflicien . The 'slide and repeated subtraction'
modulo reduction technique is carried out in a parallel
radix - 7 SD field element addition circuit which is
simply a n = k + r number of radix -7 SD adders in a
row with sum outputs feed back into the third input The
circuit speed T , may be estimated using the expression

T = tmr + tSD ((k -1) +u)); where u is the number of
subtractions and t"".;: 150;: radix - 7 SD full adderl
multiplier signal delay period. Thus taking a(t), b(t) and
wet) in their polynomial coefficient form of
representation as: a = {2,-3 , -2, 2,-1, 3},b = {-1,2,-
3,3,2,1} and the monic irreducible polynomial as w= {l,
-3,-3, 3,-1, 2, 1,-3} over GF(78) in which SGF(72

) is a
sub field then, the following polynomial arithmetic
operations were successfully carried out using the above
outlined.

i) a + b = {2,-3, -2, 2,-1, 3} + {-1,2,-3,3,2,l}
= {1,-1,2,-2,1,-3}

ii) a - b = {2,-3, -2, 2,-1, 3} - {-1.2,-3.3,2.1}
= {3,2,1,-1,-3,-1}

iii) a. b= {2,-3 , -2, 2,-1, 3}. (-1,2.-
3,3,2,1}1{1, -3,-3, 3,-1, 2, 1,-3)= {-3,2,2,2-
3,2,3}

iv) {2,-3,0, 2,-1,O,3r1 modulo (l, -3,-3, 3,-1, 2,
1,~3)= {1,-2.2,~1,2,1-2,·1}

3.4 Observations: SGF(p) wbenp is prime >7

A. In our examination of radix -7 SDN svstem. the
applicability of the primitive root P = 7 to certain prime
modulo in the set: lJ =7" ± 61 .1 S l(U.2 ..... n-ll and II

S{!,3 ..J .... l. For example:
LU7.61.109.157 373 222993 8U:!93.
... .119lJ53 : generated verv great interest, Field
arithmetic ill these fields requires the consideration of

Ultra element carries. For example. F"j = F 121 where tilt:
elements ill radix - 7 8D coding are :0.1.23.--- --- -13.12.1 1.10.11.12.13.23.21.2 1.20.21.22 .123
: the following arithmetic operations elicits the above
peculiarity.

i) 23 + 22 = 23 + 22 mod 121 = 121

ii) 23.22 = 23 • 22 mod 122 = 130

iii) 23-1 = 23-lmoJ 121 = 11

B. For practical applications such as in the area of
cryptography requiring input operands of very long word
lengths, the method of folded operand multiplication [4]
can be adopted

3. CONCLUSION
We have hown that extending radix 7 SD arithmetic to
finite fields can bring about efficient signed digit Element
finite fields arithmetic. We have used this concept to
construct SGF (72) and proposed parallel-signed digit
element finite field multiplication architecture. This
contribution may find application in signed digit code
theory as well as in the design of fast and more compact
very high radix MVL cryptographic systems.
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