MALARIA IN HIV/AIDS: A STUDY OF ANTI-RETROVIRAL DRUGS ON MALARIA PARASITAEMIA

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, UNIVERSITY OF LAGOS, NIGERIA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN PHARMACOLOGY

 \mathbf{BY}

AKINYEDE, AKINWUMI AKINYINKA MB.ChB. (Ife), MSc.(Lagos)

MARCH 2010

DECLARATION

This work titled "MALARIA IN HIV/AIDS: A STUDY OF ANTI-RETROVIRAL DRUGS ON MALARIA PARASITAEMIA "submitted to the School of Postgraduate Studies, University of Lagos, Lagos, Nigeria for the award of Doctor of Philosophy in Pharmacology was an original research carried out by AKINYEDE, Akinwumi Akinyinka in the Department of Pharmacology, College of medicine of the University of Lagos, under the supervision of Prof. Alade Akintonwa, Dr. (Mrs.) E. O. Agbaje and Prof. C. C. Okany.

This work has not been submitted previously elsewhere, in whole or part, to qualify for any other academic award. AKINYEDE, AKINWUMI AKINYINKA (Student)

PROF. ALADE AKINTONWA (Supervisor)

Department of Pharmacology, College of Medicine of the University of Lagos, Idi Araba, P. M. B. 12003, Lagos, Nigeria.

DR. (MRS.) E.O. AGBAJE (Supervisor)

Department of Pharmacology, College of Medicine of the University of Lagos, Idi Araba, P. M. B. 12003, Lagos, Nigeria.

PROF. C. C. OKANY (Supervisor)

Department of Hematology and blood transfusion, College of Medicine of the University of Lagos, Idi Araba, P. M. B. 12003, Lagos, Nigeria.

UNIVERSITIY OF LAGOS SCHOOL OF POSTGRADUATE STUDIES

CERTIFICATION

This is to certify that the thesis:

MALARIA IN HIV/AIDS: A STUDY OF ANTI-RETROVIRAL DRUGS ON MALARIA PARASITAEMIA

Submitted to the School of Postgraduate Studies, University of Lagos

for the award of the degree of

DOCTOR OF PHILOSOPHY (Ph.D)

is a record of original research work carried out

By

AKINYEDE, AKINWUMI AKINYINKA

In the Department of Pharmacology

AUTHOR'S NAME	SIGNATURE	DATE
SUPERVISOR'S NAME	SIGNATURE	DATE
SUPERVISOR'S NAME	SIGNATURE	DATE
SUPERVISOR'S NAME	SIGNATURE	DATE
INTERNAL EXAMINER	SIGNATURE	DATE
INTERNAL EXAMINER	SIGNATURE	DATE
EXTERNAL EXAMINER	SIGNATURE	DATE
SPGS REPRESENTATIVE	SIGNATURE	DATE

DEDICATION

I dedicate this research to the Almighty God: the Omniscient, the Immortal, Invisible, only wise God.

ACKNOWLEDGEMENT

I acknowledge the favour of God upon my life, which has been the key factor in the success of this programme. He only, as the Creator, can generate valuable ideas. I am grateful to my supervisor Prof. Alade Akintonwa, who has carried out the complete duties of a supervisor in ensuring that the outcome of the research work is useful and not a mere exercise. He is ever quick to identify potential areas of quality research and unrelenting in designing solutions to problems. I am grateful to my co-supervisors, Prof. C. C. Okany and Dr. E. O. Agbaje. In addition to his wealth of experiences in research, which was of great assistance in this research, Prof. Okany also fine-tuned my perspectives, especially on HIV/AIDS research. Dr. Agbaje gave useful tips which were of great assistance at the time I commenced the pharmaco-epidemiological studies. I am equally grateful to Dr. (Mrs.) O. O. Adeyemi, who taught me through my postgraduate period and encouraged me at every opportunity. Her contributions were also invaluable. It is pertinent here to mention Prof. A. O. Onabanjo, who started off as my supervisor before his retirement. He always did everything he could to ensure my progress. I am also grateful to Prof. A. F. B. Mabadeje who exposed me to some areas of clinical pharmacology, which has been useful in my carrier. The memory of Dr. Ashorobi still lingers on. During his last days, he would see me whenever he was around to ask about the progress of this work. I am grateful to Prof. H. A. B. Coker, who never hesitated to advise me whenever the need arose. Noteworthy is the encouragement of Prof. Omilabu which has impacted on this work in a positive manner. I appreciate the technical roles played by Mr. K. A. Okegbemi, Mrs V. Apugo, Mr. J. Owagbayegun, Mr. N. Nwose, Mr. O. A. Duncan, Mr. C. C. Micah, Mr. Akindele, Mr Hillary and Mr. J. Bamiro during this research.

I appreciate my friends, who as colleagues, would give useful advice and support whenever the need arose, they include: Dr. S.O. Olayemi, Dr. W. Oyibo, Dr. I. Oreagba, Dr. Awodele, Dr. A. J. Akindele, Dr. O. Aina, Dr. Dolapo, Dr. P. M. Emeka, Mr. I. Ishola. Their various inputs have been very useful. Mrs. A. M. Akinremi, Mrs. B. A. Onetufo, Mr. A. Adeyemo, Mrs. C. N. Ashinze and Mrs. T. O. Oderinde played noble roles when I needed administrative assistance in the course of this work. I am equally grateful to the staff of the Hematology Clinic LUTH, and APIN Laboratory.

I appreciate, very much, the HIV/AIDS patients who agreed to be enrolled in this study, therefore contributing immensely to making this work possible. It is important to mention the roles played by Mr. A. Salami, Mrs. T. Osatuyi, Mrs. K. Alade, and Miss. D. Akinnagbe in various ways to ensure the success of this work.

I am indebted to the following people, who played great roles in my life since I was born: my parents, Hon. Justice and Mrs J. O. Akinyede; my 108 year old grandmother, Chief (Mrs.) A Akinbola; my uncles and their wives HRH Oba O. A. Akinbola and Olori I. Akinbola, Mr. and Mrs. A. Akinbola; my very senior cousin and his wife, Dr. and Dr. (Mrs.) G. A. Akilo. Without their contributions, I am not sure that I would have got to this level of academic pursuits, considering the harsh terrain in the country, which many times prevent people from making set goals particularly in academic and research activities. It is pertinent to mention the roles played by my late uncle and his wife Chief G. B. A. Akinyede and Mrs. A. Akinyede. Their support which obviously contributed to the development of my father in life

of which I am a beneficiary. I acknowledge my siblings, Yemi, Busola, Yinka and Olatunde who have at one point or the other lent a helping hand as we grew up.

My children, Tobi, Tosin and Yemisi are ever willing to cooperate in ways that facilitate my career. They have been encouragers.

I express gratitude to Brother Akin Oluwatudimu, Rev. Dr. Sola Aworinde, Rev. Tom Takpatore, Rev and Rev. (Mrs.) Ayo Obiremi, Rev. Adekunle Tayo, Deacon Dosunmu for the roles they have played in my life.

Finally, I am most grateful to my wife, Chidubem. She has given unimaginable support. In addition to keeping the home front, she has also gone the extra mile to the extent of doing and supervising chores women would normally not engage in, she got involved in this work, rendering all kinds of assistance.

TABLE OF CONTENTS

DECLARATIO	ON	ii
CERTIFICAT	ION	iii
DEDICATION	N	iv
ACKNOWLE	DGEMENT	v
TABLE OF C	ONTENTS	viii
LIST OF FIG	URES	xxi
LIST OF TAB	LES	xxii
ABSTRACT		xxv
CHAPTER C	ONE INTRODUCTION	
1.0	INTRODUCTION	1
1.1	BACKGROUND OF STUDY	1
1.2	STATEMENT OF THE PROBLEMS	6
1.3	AIM AND OBJECTIVES	7
1.4	SIGNIFICANCE OF STUDY	8
1.5	LIMITATION OF STUDY	9
1.6	DEFINITION OF TERMS	9
1 7	LIST OF ARREVIATIONS	10

CHAPTER TWO LITERATURE REVIEW

2.0	LITERATURE REVIEW	11
2.1	THE LINK BETWEEN HIV AND MALARIA	11
2.1.1	DEMOGRAPHIC CONSIDERATIONS	11
2.1.2.	THE ECONOMIC BURDEN OF HIV/AIDS,	
	MALARIA AND TUBERCULOSIS	15
2.1.3	PUBLIC HEALTH IMPLICATIONS OF CO-INFECTION	
	WITH MALARIA AND HIV/AIDS	15
2.1.4.	IMPLICATIONS FOR CLINICAL AND PUBLIC	
	HEALTH MANAGEMENT	17
2.1.5.	PHYSIOLOGIC IMPACT OF HIV ON THE IMMUNE SYSTEM	19
2.1.6.	DRUG RELATED INTERACTION BETWEEN HIV AND MALARIA	21
2.1.7.	COMPARISN OF HIV IMPACT ON MALARIA BETWEEN	
	SOUTHERN AFRICA AND OTHER AFRICAN COUNTRIES	23
2.1.8.	WHO RECOMMENDED INTEGRATED APPROACH	
	TO THE DELIVERY OF HEALTH SERVICES RELATING	
	TO MALARIA AND HIV	26
2.2	HIV/AIDS	27
2.2.1	HISTORY OF HIV/AIDS.	27
2.2.2	VIROLOGY OF HIV / AIDS	30
2.2.2.1	THE EFFECT OF HIV ON THE IMMUNE SYSTEM	30

2.3	DRUG TREATMENT OF HUMAN IMMUNODEFICIENCY VIRUS	
	INFECTION / ACQUIRED IMMUNODEFICIENCY SYNDROME	33
2.3.1.	CLASSIFICATION OF ANTIRETROVIRAL DRUGS USED	
	FOR TREATMENT OF HUMAN IMMUNODEFICIENCY VIRUS	34
2.3.1.1.	NUCLEOSIDE AND NUCLEOSIDE REVERSE TRANSCRIPT	CASE
	INHIBITORS	34
2.3.1.2.	NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS	34
2.3.1.3.	PROTEASE INHIBITORS	34
2.3.1.4	INTEGRASE INHIBITORS	35
2.3.1.5.	ENTRY INHIBITORS OF FUSION INHIBITOR	35
2.3.1.6.	MATURATION INHIBITORS	35
2.3.1.7.	SYNERGISTIC ENHANCERS	35
2.3.1.8.	VIRAL MUTAGEN	36
2.3.1.9.	COMBINATION THERAPY	37
2.3.2.0.	FIXED DOSE-COMBINATIONS	38
2.3.2.1.	CURRENT TREATMENT GUIDELINES	39
2.3.2.2	ANTIRETROVIRAL POST EXPOSURE PROPHYLAXIS AFTER	
	SEXUAL, INJECTION-USE, OR OTHER NON OCCUPATIONAL	
	EXPOSURES TO HIV IN THE UNITED STATES.	42
2.3.2.3.	WHO'S RECOMMENDATION FOR POST EXPOSURE	
	PROPHYLAXIS	43
2.3.2.4.	PREVENTION OF MOTHER- TO- CHILD TRANSMISSION	43
2.4	MALARIA	44

2.4.1	HISTORY OF MALARIA	4	14
2.4.2	CLINICAL FEATURES OF MALARIA	4	18
2.4.3	PATHOGENESIS OF MALARIA	4	19
2.4.4	LABORATORY DIAGNOSIS	5	0
2.4.5	DRUGS USED IN THE TREATMENT OF	MALARIA 5	51
2.4.5.1	CLASSIFICATION OF ANTIMALARIA I	DRUGS 5	51
2.4.5.1.1	CHLOROQUINE AND ITS CONGENERS	5	66
2.4.5.1.2	CHLOROGUANIDE AND CYCLOGUANI	C PAMOATE 6	53
2.4.5.1.3	DIAMINOPYRIMIDINES	6	53
2.4.5.1.4	SULFONAMIDES	6	66
2.4.5.1.5	ARTEMISININ AND ITS DERIVATIVES	7	8
2.4.6	THERAPEUTICS	8	33
2.4.7	PREVENTION AND CONTROL	8	36
2.4.8	MALARIA VACCINE RESEARCH	8	88
2.4.9	HERBS USED IN TREATING MALARIA	8	39
2.5.0	INFLUENCE OF NUTRITIONAL FACTOR	RS ON	
	PHARMACOKINETIC PARAMETERS	9	0
CHAPTER	THREE MATERIALS AND METH	ODS 9	2
3.0	MATERIALS AND METHODS	9	92
3.0	PHARMACOEPIDEMIOLOGICAL STUDI	ES 9	2
3.1	KNOWLEDGE, TREATMENT AND		
	PREVENTIVE PRACTICES OF MALARIA	Δ.	92

3.1.1	THE STUDY AREA	92
3.1.2	STUDY DESIGN	92
3.2	THE PREVALENCE OF MALARIA PARASITAEMIA AMONG	
	HIV INFECTED PATIENTS WITHOUT FEATURES OF	
	CLINICAL MALARIA	93
3.2.1	ETHICAL CLEARANCE	93
3.2.2	WRITTEN INFORMED CONSENT	93
3.2.3	SELECTION OF SUBJECTS.	93
3.3	RELATIONSHIP BETWEEN CLINICAL MALARIA	
	AND PARASITAEMIA AMONG HIV/AIDS PATIENTS	93
3.3.1	SELECTION OF SUBJECTS.	93
3.3.2.	DETERMINATION OF MALARIA PARASITE COUNT	94
3.3.2.1	COLLECTION OF HUMAN BLOOD SPECIMEN	94
3.3.2.2.	BARRIER MEASURES	94
3.3.2.3.	PREPARATION OF THE THICK AND THIN BLOOD FILMS.	94
3.3.2.4.	THIN FILM	95
3.3.2.5.	THICK FILM	95
3.3.2.6.	STAINING THE BLOOD FILMS WITH GIEMSA STAIN.	95
3.3.2.7.	EXAMINATION OF THE THICK FILMS.	96
3.3.2.8.	EXAMINATION OF THE THIN FILMS.	96
3.3.2.9.	ESTABLISHING A PARASITE COUNT.	96

3.4	SOME HEMATOLOGICAL PATTERNS OF HIV PATIENTS AND	
	RELATIONSHIP OF HEMOGLOBIN CONCENTRATION,	
	CD ₄ COUNT, BLOOD GROUP, GENOTYPE	
	AND VIRAL LOAD TO MALARIA PARASITAEMIA.	97
3.4.1.	LABORATORY INVESTIGATION	97
3.4.1.1.	DETERMINATION OF MALARIA PARASITES.	97
3.4.1.2.	HEMOGLOBIN CONCENTRATION (CYANMETHEMOGLOBIN	
	METHOD)	97
3.4.1.3.	CD ₄ COUNT	98
3.4.1. 4.	BLOOD AND RHESUS GROUPING (TILE METHOD)	98
3.4.1.5.	GENOTYPING (CELLULOSE-ACETATE ELECTROPHORESIS	
	METHOD)	98
3.4.1.6.	DETERMINATION OF THE VIRAL LOAD	99
3.4.1.7	HIV TEST	100
3.5.	RELATIONSHIP BETWEEN MALARIA PARASITAEMIA AND	
	MEDICATION USED BY HIV INFECTED PATIENTS	101
3.5.1.	SELECTION OF SUBJECTS	101
3.5.2.	SURVEY OF DRUG USE	101
3.6	IN- VIVO STUDIES	102
3.6.1	PARASITE	102
3.6.2	DRUGS TESTED	102
3.6.3	DRUG ADMINISTRATION	103

3.6.4	COLLECTION OF ANIMAL BLOOD SPECIMEN	103
3.6.5	DETERMINATION OF PARASITAEMIA	103
3.6.6	DETERMINATION OF PROPHYLACTIC EFFECT OF	
	LAMIVUDINE, ZIDOVUDINE, NEVIRAPINE, AND	
	STAVUDINE ON MALARIA PARASITAEMIA	103
3.6.7	DETERMINATION OF CURATIVE EFFECT OF	
	LAMIVUDINE, ZIDOVUDINE, NEVIRAPINE AND	
	STAVUDINE ON MALARIA PARASITAEMIA	104
3.7	DETERMINATION OF SAMPLE SIZE FOR HUMAN	
	EXPERIMENT	105
3.8.	DATA ANALYSIS	105
CHAPTER	FOUR RESULTS	106
4.0	RESULTS	106
4.1.	KNOWLEDGE, ATTITUDE AND PRACTICE IN RESPECT OF	
	MALARIA AMONG PATIENTS WITH THE HUMAN	
	IMMUNODEFICIENCY VIRUS INFECTION.	106
4.1.1	DEMOGRAPHY	106
4.1.2.	KNOWLEDGE ABOUT MALARIA	113
4.1.2.1	KNOWLEDGE ABOUT THE CAUSE OF MALARIA	113
4.1.2.2.	KNOWLEDGE OF HOW MALARIA CAN BE PREVENTED.	113
4.1.2.3.	KNOWLEDGE OF APPROPRIATE DRUG FOR THE TR	
EATMENT		

	OF MALARIA.	113
4.1.2.4	KNOWLEDGE OF APPROPRIATE DOSE OF ANTIMALARIA	
	DRUGS.	116
4.1.3.	PRACTICE IN RESPECT OF MALARIA	116
4.1.3.1.	TREATMENT SEEKING PRACTICE IN RESPECT OF MALARIA	116
4.1.3.2.	USE OF INSECTICIDE TREATED BED NETS FOR PREVENTION	
	OF MALARIA	116
4.1.3.3.	USE OF PROPHYLACTIC ANTIMALARIA	119
4.1.4.	RELATIONSHIP BETWEEN THE SOCIO-ECONOMIC PATTERNS	
	AND USE OF PROPHYLACTIC ANTIMALARIA	119
4.1.4.1.	RELATIONSHIP BETWEEN THE PATIENTS' LEVEL OF	
	EDUCATION, EMPLOYMENT STATUS, OCCUPATION, FAMILY	
	INCOME AND USE OF PROPHYLACTIC ANTIMALARIA	119
4.1.4.2.	RELATIONSHIP BETWEEN SPOUSE'S EMPLOYMENT STATUS,	
	SPOUSE'S OCCUPATION AND USE OF PROPHYLACTIC ANTI-	
	MALARIA	121
4.1.5	RELATIONSHIP BETWEEN THE SOCIO-DEMOGRAPHIC PATTERN	1
	AND USE OF PROPHYLACTIC ANTIMALARIA	121
4.1.5.1.	RELATIONSHIP BETWEEN THE AGE, SEX, MARITAL STATUS,	
	HOME SETTING, NUMBER OF CHILDREN AND USE OF	
	PROPHYLACTIC ANTIMALARIA	121
4.1.6.	RELATIONSHIP BETWEEN THE RESPONDENTS' SOCIO-	

	DEMOGRAPHIC CHARACTERISTICS AND USE OF INSECTICIDE	
	TREATED BED NETS.	121
4.1.7.	RELATIONSHIP BETWEEN THE SOCIO-ECONOMIC PATTERNS	
	AND USE OF INSECTICIDE TREATED BEDNETS.	125
4.1.7.1.	RELATIONSHIP BETWEEN THE RESPONDENT'S SOCIO-	
	ECONOMIC CHARACTERISTICS AND THE USE OF INSECTICIDE	
	TREATED BED NETS.	125
4.1.7.2.	RELATIONSHIP BETWEEN SPOUSE'S SOCIO-ECONOMIC	
	CHARACTERISTICS AND USE OF INSECTICIDE TREATED	
	BEDNETS	125
4.2.	PREVALENCE RATE OF MALARIA PARASITAEMIA	128
4.2.1	PREVALENCE RATE OF MALARIA PARASITAEMIA AMONG	
	PATIENTS WITHOUT CLINIAL MALARIA ATTENDING THE HIV	
	CLINIC IN LUTH	128
4.2.1.1	SOCIO-DEMOGRAPHIC PROFILE	128
4.2.1.2	PREVALENCE OF MALARIA PARASITAEMIA	128
4.2.2.	RELATIONSHIP BETWEEN CLINICAL MALARIA AND	
	PARASITAEMIA AMONG PATIENTS WITH THE HUMAN	
	IMMUNODEFICIENCY VIRUS.	128
4.2.2.1.	SOCIO-DEMOGRAPHIC PROFILE	128
4.2.2.2.	RELATIONSHIP BETWEEN CLINICAL MALARIA AND PRESENCE	
	OF MALARIA PARASITAEMIA	131

4.3.	SOME HEMATOLOGICAL PATTERNS OF THE HIV PATIENTS	131
4.3.1	DISTRIBUTION OF THE PATIENTS ACCORDING TO THEIR	
	HEMOGLOBIN CONCENTRATION	131
4.3.2.	DISTRIBUTION OF HEMOGLOBIN CONCNENTRATION IN	
	RELATION TO MALARIA PARASITAEMIA	131
4.3.3.	DISTRIBUTION OF THE PATIENTS ACCORDING TO THEIR CD ₄	
	COUNTS	133
4.3.4	DISTRIBUTION OF CD4 COUNT IN RELATION TO MALARIA	
	PARASITAEMIA	133
4.3.5.	DISTRIBUTION OF PATIENTS ACCORDING TO THEIR BLOOD	
	GROUPS	133
4.3.6	DISTRIBUTION OF THE BLOOD GROUPS IN RELATION TO	
	MALARIA PARASITAEMIA	135
4.3.7.	DISTRIBUTION OF PATIENTS ACCORDING TO THEIR	
	GENOTYPES.	135
4.3.8	DISTRIBUTION OF THE GENOTYPES IN RELATION TO MALARIA	4
	PARASITAEMIA	137
4.4.	VIRAL LOAD OF THE HIV PATIENTS	137
4.4.1.	DISTRIBUTION OF THE PATIENTS BY THEIR VIRAL LOAD	137
4.4.2.	DISTRIBUTION OF THE VIRAL LOAD IN RELATION TO	
	MALARIA PARASITAEMIA.	139
4.5.	CURRENT DRUG USE BY THE HIV PATIENTS.	139

4.5.1.	CURRENT USE OF ANTIMALARIA DRUGS BY THESE PATIENTS	139
4.5.1.1	DISTRIBUTION ACCORDING TO TYPES OF ANTIMALARIA	
	AGENTS TAKEN BY RESPONDENTS.	142
4.5.1.2.	RELATIONSHIP BETWEEN CURRENT ANTIMALARIA AGENTS	
	AND MALARIA PARASITAEMIA.	142
4.5.2.	DISTRIBUTION OF PATIENTS BY THE USE OF ANTIOXIDANTS	142
4.5.2.1.	DISTRIBUTION ACCORDING TO DIFFERENT TYPES OF	
	ANTIOXIDANTS USED CURRENTLY.	145
4.5.2.2.	RELATIONSHIP BETWEEN CURRENT ANTIOXIDANT USE AND	
	PARASITAEMIA.	145
4.5.3.	DISTRIBUTION OF PATIENTS ACCORDING TO THE USE OF	
	ANTIRETROVIRAL DRUGS	145
4.5.3.1.	DISTRIBUTION OF PATIENTS ACCORDING TO THE TYPES OF	
	ANTIRETROVIRAL DRUGS THEY WERE RECEIVING	145
4.5.3.2.	RELATIONSHIP BETWEEN CURRENT USE OF ANTIRETROVIRAL	
	AGENTS AND MALARIA PARASITAETAMIA	148
4.6	ANTIPLASMODIAL EFFECT OF SOME ANTIRETROVIRAL DRUGS	148
4.6.1	PROPHYLACTIC EFFECT OF LAMIVUDINE, ZIDOVUDINE,	
	NEVIRAPINE AND STAVUDINE AGAINST P. BERGHEI	
	INFECTION IN MICE	148
4.6.2	CURATIVE EFFECT OF LAMIVUDINE, ZIDOVUDINE, NEVIRAPINE	Ξ
	AND STAVUDINE AGAINST P. BERGHEI INFECTION IN MICE	152

CHAPTER	FIVE DISCUSSION AND CONCLUSION	155
5.0	DISCUSSION	155
5.1	POLYGAMY PRACTISED BY SOME OF THESE HUMAN	
	IMMUNODEFICIENCY VIRUS INFECTED PATIENTS	157
5.2	INSUFFICIENT KNOWLEDGE AND POOR PRACTICE IN THE	
	PREVENTION AND TREATMENT OF MALARIA	157
5.3	POOR CORRELATION BETWEEN CLINICAL MALARIA AND	
	PARASITAEMIA	160
5.4	EMERGING RESISTANCE TO ANTIMALARIA DRUGS	161
5.5	ANTIOXIDANT USE NOT ASSOCIATED WITH MALARIA	
	PARASITAEMIA	164
5.6	REVERSAL OF MALARIA-INDUCED HUMAN IMMUNO DEFICIE	NCY
	VIRAL REPLICATION BY ANTIRETROVIRALS	164
5.7	LOWERED CD4 COUNT NOT NECESSARILY CORRELATED	
	WITH MALARIA TENDENCY IN HUMAN IMMUNO-DEFICIENCY	-
	VIRUS INFECTION	165
5.8	MALARIA IN HUMAN IMMUNODEFCIENCY VIRUS INFECTED	
	PATIENTS NOT ASSOCIATED WITH ANEMIA	166
5.9	ANTIPLASMODIAL ACTIVITY OF ANTIRETROVIRAL DRUGS	169
REFERENCES		

APPENDICES 215

LIST OF FIGURES

Figure 1	1: Structures of Primaquine, Chloroquine, Quinine, Proguanil, Pyrimethamine and Sulfanilamide	54
Figure 2	2: Structures of Artemisinin, Artemisinin derivatives, mefloquine and Atovaquone	55
Figure 3	3: Knowledge about the cause of malaria	114
Figure 4	4: Knowledge of appropriate dose of antimalaria	117
Figure :	5: Use of Insecticide Treated Bed Nets (ITN)	117
Figure (6: Prevalence rate of malaria parasitaemia among patients attending the HIV Clinic in LUTH	129
Figure '	7: Relationship between clinical malaria and presence of malaria Parasitaemia	132
Figure 8	8: Distribution of patients by use of antioxidants	144
Figure 9	9: Distribution of patients according to the use of antiretroviral drugs	146
Figure 1	10: Relationship between current use of antiretroviral drugs and malaria parasitaemia	149

LIST OF TABLES

Table 1:	Age distribution of respondents to questionnaires	105
Table 2:	Marital Status and Home setting of respondents to questionnaires	106
Table 3:	Distribution of respondents according to number of their children	107
Table 4:	Educational status of respondents	107
Table 5:	Employment status and occupation of respondents	108
Table 6:	Employment status and occupation of the respondents' spouses	109
Table 7:	Family income of respondents	110
Table 8:	Knowledge of how malaria can be prevented	114
Table 9:	Knowledge of drugs used to treat malaria	115
Table 10:	Treatment seeking practice of respondents in respect to malaria	118
Table 11:	Association between some socio-economic variables of respondents and of antimalaria for prophylaxis	use 120
Table 12:	Association between spouses' socio-economic variables and use of antimalaria for prophylaxis	122
Table 13:	Association between the socio-demographic variables of respondents and antimalaria use for prophylaxis	123
Table 14:	Association between the respondent's socio-demographic variables and use of Insecticide Treated Bed nets	124
Table 15:	Association between the socio-economic variables of respondents and use of Insecticide Treated Bed nets	126
Table 16:	Association between the spouse's socio-economic variables and use of Insecticide Treated Bed nets	127
Table 17:	Socio-demographic distribution of patients	129
Table 18:	Socio-demographic distribution of patients with Human Immunodeficiency Virus infection diagnosed with clinical malaria	130
Table 19:	Distribution of respondents by Haemoglobin concentration	132

Table 20:	Relationship between the haemoglobin concentration and malaria padensity of the HIV patents.	rasite 132
Table 21:	Distribution of the HIV positive patients according to CD ₄ counts.	134
Table 22:	Relationship between CD ₄ count, malaria parasitaemia	
	and co-trimoxazole therapy	134
Table 23:	Distribution of patients according to their blood groups.	134
Table 24:	Distribution of blood groups in relation to malaria parasitaemia	136
Table 25:	Distribution of patients according to their genotypes	130
Table 26:	Distribution of genotype in relation to malaria parasitaemia	138
Table 27:	Distribution of the patients by viral load	138
Table 28:	Distribution of the Viral Load In Relation To Malaria Parasitaemia	140
Table 29:	Distribution of respondents by use of antimalaria	141
Table 30:	Distribution of respondents that are on anti-malaria by the type of antimalaria	143
Table 31:	Relationship between antimalaria agents taken and Malaria parasitaemia	144
Table 32:	Distribution of the patients according to the types of antioxidants used.	146
Table 33:	Distribution of the patients according to the types of antiretroviral drugs used.	147
Table 34:	The effect of prophylactic Lamivudine, Zidovudine, Nevirapine and Stavudine, on <i>plasmodia berghei</i> infection in mice	150
Table 35:	The Effect of prophylactic Lamivudine, Zidovudine, Nevirapine and Lamivudine, Stavudine, Nevirapine combinations on <i>plasmodia berghei</i> infection in mice	151
Table 36	The Effect of curative regimen of Lamivudine, Zidovudine, Nevirapine and Stavudine on <i>plasmodia berghei</i> infection in mice	153

Table 37: The Effect of curative regimen of Lamivudine, Zidovudine, Nevirapine and Lamivudine, Stavudine, Nevirapine combinations on *plasmodia berghei* infection in mice.

154

ABSTRACT

The Centre for Disease Control has reported that at least 500 million people suffer from malaria every year. The situation is worse in Africa which accounts for at least 300 million of those with malaria fever (WHO, 2006). The problem of malaria on the health of Africans has been compounded by HIV/AIDS, a leading cause of death in the region, especially since the two diseases co-exist in some individuals. A structured questionnaire was used to assess the knowledge, preventive and treatment seeking practice in respect of malaria among 469 patients attending the Human Immunodeficiency Virus (HIV) Clinic at the Lagos University Teaching Hospital. Also, the prevalence of malaria parasitaemia among patients without clinical malaria as well as the relationship between clinical diagnosis of malaria and malaria parasitaemia was investigated in 100 patients, respectively, attending the HIV Clinic by microscopic examination of blood smears for malaria parasites. Microscopic examination of blood smears of 100 patients was also carried out for malaria parasites, while hematological parameters were tested to determine the relationship between malaria parasitaemia and these hematological parameters. One hundred HIV infected patients were surveyed for their drug use and malaria parasitaemia probing for antiplasmodial effects of these drugs. Furthermore, the antiplasmodial effects of antiretroviral drugs, lamivudine, zidovudine, nevirapine and stavudine on *plasmodia berghei* inoculated into mice were investigated.

Out of the respondents, 235 (47.6%) respondents did not know how malaria could be prevented. Only 42(8.5%) respondents knew of prevention by insecticide treated bed nets, while 138 (27.9%)knowledge of non-insecticide treated had bed nets. Sulphadoxin/pyrimethamine was the commonest known antimalaria. followed by choloroquine and artemisinin based combination therapy representing 28.5%, 15.4% and 11.7% respectively. Also, 34.8% of the respondents knew the appropriate antimalaria drug dosage. Most of the patients visited the HIV/AIDS Clinic, General hospitals or private hospitals whenever they perceived an attack of malaria fever representing 17.8%, 15.2% and 18.6% respectively. Only 244 (52%) of the patients used insecticide treated bed nets for prevention of malaria. There was significant association between the patients' level of education and use of prophylactic antimalaria P=0.01. There was no demonstrable malaria parasitaemia in the blood smears of 91 out of the 100 HIV infected patients who had been clinically diagnosed as malaria fever, malaria parasitaemia among these patients was significantly less than it was in the control group, P = 0.000.

The patients with the highest CD_4 count, >350 had the highest malaria parasite density, while the remaining 2 groups with CD_4 values of <200 and 200-350 had lower parasite densities. The patients with the lowest viral load <20, 000 had significantly higher malaria parasite density compared with the groups with viral load 20,000-40,000 and 60,000-80,000, P=0.18, 0.021 respectively. These patients, with <20, 000, were on antiretroviral drugs, while those with the higher viral load and less densities were not. Three of the patients on co-trimoxazole, in the last 28 days, had malaria parasitaemia, while malaria parasitaemia was not found in the blood smears of those on other antimalaria drugs during the period. There was significant dissociation between the use of antiretroviral drugs and the presence of malaria parasitaemia, P=0.006.

Zidovudine as a single therapy and triple drugs combination of lamivudine, zidovudine, nevirapine completely eliminated *plasmodia berghei* infection in mice, when these drugs were given as prophylactic and curative regimens. The findings reveal the need to improve on the health education of patients infected with the Human Immunodeficiency Virus in respect of malaria and to carry out laboratory diagnosis of these patients before antimalaria therapy is administered. Also, the antiplasmodial effect of zidovudine and lamivudine, zidovudine, nevirapine combination has been shown.