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Abstract: A four-step Continuous Block Hybrid Method (CBHM) with four non-step points of order (9, 9, 10,
9,9,9,9, 9 is proposed for the direct solution of the 1st order Initial Value Problems (IVPs). The main method
and additional methods are obtained from the same continuous scheme derived via interpolation and
collocation procedures. The stability properties of the methods are discussed and the stability region shown.
The methods are then applied in block form as simultaneous numerical mtegrators over non-overlapping
intervals. Numerical results obtained using the proposed block form shows that it is attractive for solutions of

stiff problems.
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INTRODUCTION

Consider the IVP:
Y =£(x,y). yx,) =Y, (1

We seek a solution in the range a<x<b where, a and
b are finite and we assume that { satisfies the conditions
which guarantee that the problem has a unique
continuously differentiable solution which we shall
indicate by Y (x). Consider the sequence of points {x,}
defined by x, = atnh, n= 0, 1, 2,..., b-a/h where, the
parameter h>0 1s a constant step-size. An essential
property of the majority of computational methods for the
solution of Eq. 1 is that of discretization that is we seek an
approximate solution, not on the continuous interval
a<x<b but on the discrete poimt set {x,}. The k-step Linear
Multistep Method (LMM) for the solution of Eq. 1 is
generally written as:

k k
Eotjynﬂ. = hE B f,.. 2
=0 j=0

Which has 2k+1 unknown «’s and p’s and therefore
can be of order 2k where, k is the step number. But
according to Dahlquist (1963), the order of Eq. 2 camnot
exceed k1 (kis odd) or k+2 (k is even) for the method to
be stable. Several researchers such as Lambert (1973),
Gear (1965), Gragg and Stetter (1964), Butcher (1965) and

Brugnano and Trigiante (1998) proposed modified forms
of Eq. 2 which were shown to overcome the Dahlquist
barrier theorem. These methods known as Hybrid
methods were obtained by incorporating at off-step
points in the derivation process. We define a k-step
continuous hybrid formula to be of the type:

k k
EOLJ(X)yMJ - hz BT, +
i=0 i=0

h}v‘, B, (O,

3

Where, h is the stepsize, v is the number of
off-points, e, = 1, ¢ (x), B; (x), Pn, (x) are continuous
coefficients which are uniquely determined from the
derivation process. Hybrid methods were mitially
proposed to overcome the Dahlquist barrier theorem
for solving 1st order I1VPs. Hybrid methods have
been considered by Gragg and Stetter (1964), Lambert
(1973) and Kohfeld and Thompson (1967) and are of
the form:

k k
ZGJYB+] =h E B_] fn+] +hB. L. (4
=0 i=0

re{0,1)

Which were shown to be of order up to 2k+2. Gupta
(1978) and Tator (2010) noted that the design of algorithms
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for Eq. 4 is more tedious due to the occurrence of £, in
Eq. 4 which increases the mumber of predictors needed to
umnplement the method. Donelson and Hansen (1971)
proposed cyclic composite multistep methods which were
also shown to circumvent the Dahlquist barrier theorem.
The methods were applied in a predictor-corrector mode
to scalar 1st order [VPs by combiming different correctors
and writing them as a single matrix difference equation. It
was reported by Donelson and Hansen (1971) that
stability was achieved with higher order methods without
additicnal fimction evaluations however, an extra amount
of programmmg was required. The Hybnd method
proposed in this study is self-starting and implemented
without the use of predictors. The derivation of the
method 1s based on nterpolation and collocation (Lie and
Norsett, 1989, Atkinson, 1989; Onumanyi et al., 1994,
Gladwell et al., 1980).

Block methods were first introduced by Milne (1953)
for use only as a means of obtaming starting values for
predictor-corrector algorithms and has since then been
developed by several researchers (Rosser, 1967; Sarafyan,
1965, Shampine and Watts, 1969) for general use. We
emphasize that the hybrid methods are developed for
general use, not only as a means of obtaimng starting
values for predictor-corrector algorithms.

To this end, the continuous representation generates
a main discrete hybrid method and four additional
methods which are combined and implemented as a block
method which simultaneously generates approximations
Yarje 0 the exact solution, y(x,.;), j=0,1,2, ..., 8and
r = 1/2. Without loss of generality, V,.sp, Viess Yariizs Yards
Vae132s Yaers Yasisns Yars 18 Obtamed in the next block using
V.4 a8 the starting value. Thus, the order of the algorithm
1s maintained. In this study, the aim 1s to generate a four
step Continuous hybrid block method with four off-step
points and to demonstrate the efficiency
implementation on stiff and non stiff ODEs.

m s

Derivation of the method: In this study, the objective 1s to
derive the mam Hybrid method of the form:

4 4
Ea]ynﬂ = hz Bj fn+j +
1=3 =0

h; BT]] fn+n

)

1

¢, B Pm are coefficients and m; 1s chosen from the
mterval (0, 4). In order to obtain Eq. 5, we proceed by
seeking an approximation of the exact solution y(x) by

assuming a continuous solution Y(x) of the form:

48

Y(x)= }ELH

j=0

b, () (6)

Such that xe[x,, X], b are unknown coefficients and
¢; (x) are polynomial basis function of degree ptq-1
where, the number of interpolation points p and the
number of distinct collocation points ¢ are respectively
chosen to satisfy 1<p<k and g>0. The integer k=1
denotes the step number of the method We thus
construct a k-step contimuous multistep method with
@) =712, .,9n=4{1/2,3/2,52,7/2},1=1,2,3,4,
p =2, q=8& k= 4by imposing the following conditions:

9

] —
E b]Xn +HO

=0

i
3
S oy S ;=
Ebj_]x =f .,
n+ n+
=0

&3 &3
H H

You» 1=3 )

(8)

Forre(0, 1) then y,,, . is the numerical sclution for the
exact solution y (X i), frrayr = f(Xpjo Yoy ) and n is the
grid index. Tt should be noted that Eq. 7 and 8 leads to a
system of p+q equations which must be solved to obtain
the coefficient b, The four step Continuous hybrid
method 1s obtained by substituting these values of by into
Eq. 6. After some algebraic computation, the method
yields the expression in the form (Eq. 3) as:

4 4
Y(x) :Ea]ynﬂ. +h2 B f,+
=3 j=0

h; Bﬂ]f”*ﬂ

o)

Which 1s used to generate the mam discrete Hybnd
method at the interpolation point x = x,,,,. And we obtain
the additional methods by mterpolating Eq. 9 at the points
X = X Kz Kot Fwsizs Ko Kaosis Xoo - 11 coefficients of
the CBHM are shown in Table 1-3. The method is
implemented sunultaneously by applying the CBHM to
ZeNeTate Yo Yari» Yarwss Yorzs Yarsize Yorss Yarwss Yt LOT the
solution of Eq. 1 at discrete block points X, Xu 1, Xurans
Koz Xarsiz Xt X Xorg 1= 0, 4, . N-4 on the partition
[a, b].

Summary: On the partition [;; a<x<x,<...<x<xy=b, h=
b-a/N,n=0,1,2,..,N-1. Instep 1, choose N for k = 4,
the number of blocks TT = N/4, using Eg. 13,

n = 0, @ =0, the values (YnﬂfZ: Yor1s Yarsizs ¥orzs Yorsizs Yaras
Vaes Ves) are generated simultanecusly over the
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Table 1: Coefficients B j =0, ..., 2k for the method in Eq. 9 evaluated at x=x 0, ] =0, ..., 2k, j#6

k=4 1 fy i g foan fi
VainT 0 401/2800 -279/350 -9/1400 -403/350 9/70
1AM ypus 1 175/41472 -26365/145152 -93025/145152 -55225/145152 -5125/9072
2 -13/28350 16/2025 -2747/14175 -8816/14175 -1087/2835
3 7/12800 -261/44800 1431/44800 -11617/44800 -279/560
4 23/226800 -23/28350 2477113400 109/28350 -1087/5670
5 3233/7257600 -15797/362800 T1047/3628800 -198929/3628800 5207/45360
7 72977257600 -34453/3628800 147143/3628800 -377521/3628800 8233/45360
8 -119/32400 953/28350 -15577/113400 9341/28350 -2903/5670
k=4 j s fia fisp Ty m Con
VainT 0 -333/350 -79/1400 -9/350 9/280 9 -9/143360
1AM ypus 1 -75175/145152 -34015/145152 2525/145152 -425/29030< 9 425/29727129
2 -8816/14175 -2747/14175 16/2025 -13/28350 10 31/47900160
3 -25407/44800 -9559/44800 549/44800 -81/89600 9 7/13107200
4 -17741/28350 -22223/113400 247/28350 -127/226800 9 23/11612160
5 -1315919/3628800 -819143/3628800 49813/3628800 -7297/7257600 9 713107200
7 -876271/3628800 1622393/3628800 687797/3628800 -33053/7257600 9 425/29727129
8 15011/28350 21247/113400 22823/28350 32377/226800 9 -9/1433600

Table 2: Absolute error for Block hybrid method in Eq. 14 with four
off-steps at the end point T = 10

Error i = |3y ®)]

h Steps FError 1 Error 2
0.1 25 1.74 0.58

0.01 250 2.81x107% 1.59x107%
0.001 2500 9.82x10°% 4.91x10°%

Table 3:  Absolute emror for Block hybrid method Eq. 14 with four off-steps
at the end point T=10 and £ = 10~*
Error i = |3y )]

h Steps Error 1 Error 2

0.1 25 5.81x1072 5.81x10°°
0.01 250 3.69x10712 1.85x107!2
0.001 2500 1.48x10712 7.51x10713

subinterval [x;, %,] a8 y, 8 known from the VP Eq. 1. In
step 2, for =4, W = 1, (Yiesze Yarss Yiet1izo Yorto Yar132 Yauto
Va5 Vas) are obtained over the sub-interval [x, x,]
since, v, is known from the 1st block. In step 3, the
process 18 continued forn=18, .., N-4, @ =2,... Il to obtain
approximate solutions to Eq. 1 on sub-intervals [x,, x,], ...,
[%44 %] We note that for linear problems, we solve Eq. 1
directly from the start with Gaussian elimination using
partial pivoting and for non-linear problems, we use a
modified Newton-Raphson method.

Order of accuracy and local truncation error: Following
Fatunla (1991) and Lambert (1973), we define the local
truncation error associated with Eq. 5 to be the linear
difference operator:

I

k
L[Y(X);h]zxajynﬂ *hz Bj fo4i—
1=0 =0 (10)

"2

1

49

Assuming that y(x) 1s sufficiently differentiable, we
can write the terms 1 Eq. 10 as a Taylor series expression
of y (%), £ (%) =y (o) @0d £ (%) = ¥ (Rai) 82

Y, )= Iy )

yix, L= E%Y(mﬂ)(xn)

- h
): (T]J ) y(m-H)
n+’r]J o m!

(11)

y(x (x,)

Substituting Eq. 11 into equations in Eq. 10, we

obtain the expression:

LIyt :h]1=Coy(t)+ Chy'(t) +C,h%y"(t) +
thmym(t) + ..

T (12)

Where, the constant C,, m = 0, 1, 2, ... are given as

follows:
k
C, = ZOLJ

I=0

6-Yio-Y6-Yp
T=1 T=0 T=1 TIJ

C, :% 2].205]' _22]6]' _221'11'81,]
|1 1= T=1 I=1 i

(13)
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According to Henrici (1962), we say that the method

Where:

in Eq. 5 has a maximal order of accuracy m if T [y (x); h] =
O (™" hence, C, C, .., C,=0,C,, #0 YEH-I{YB Yoo Yo ¥ 3 Yaw ¥ 5 ¥ 2
therefore, C,., is the error constant and C,., h™" y™' e e e 2
(x, 0O (h™?), the principal local truncation error at the
point x,. 3
Tt is established from the calculations that the Ym—l[Yn—l You Yo Yau ¥ 3 Yaur ¥ Yn+3}
contimuous block hybrid methods shown in Table 2 have :
high order and error constants.
Analysis of CBHM: The methods shown in Table 2-4 can Fﬁf*l:[fml an L T F s fs f o9
be represented by a matrix fimte difference equation in : ’
block form:
IY,, =AY, +h[BFE,, +BF, ] (14) i {f"“‘ fn—% fn—% fz Bz o fn—%
0000000 —401
2800
0 0 00 0 0 1225
200304
1 00 00000 000 00 001
01000000 00000001 0000000 —>
28350
00100000 00000 O0O01 49
0 0 0000 —]|
[00o01 0000 Joo0o00000T1 89600
00001000 00000 O0O01 0 0 000 0 23
00 000100 000 00 001 226800
00000010 00000001 00000 0 3233
00000001 00000001 7257600
0 0 0 0 ﬂ
7257600
00000 833
226800
223218 3224 360 2664 158 72 9
2800 2800 2800 2800 2800 2800 2800 2800
52730 186050 110450 164000 50350 —68030 5050 435
290304 290304 290304 290304 290304 290304 290304 290304
224 5494 17632 10870 17632 5494 24 13
28350 28350 28350 28350 28350 28350 28350 28350
52 2862 23234 44640 50814 19118 1098 8l
B — 89600 35600 35600 39600 39600 35600 39600 39600
1 14 494 872 43480 141928 44446 1976 127
226800 226800 226800 226800 226800 226800 226800 226800
31594 142094 397858 833120 2631838 1638286 99626 7297
7257600 7257600 7257600 7257600 7257600 7257600 7257600 7257600
68906 294286 75504z 1317280 1752542 3244786 1375594 33953
7257600 7257600 7257600 7257600 7257600 7257600 7257600 7257600
7624 31154 74728 116120 120088 42494 182584 32377
226800 226800 226800 226800 226800 226800 226800 226800

Where, w =0, 1, 2, ... and n is the grid index.
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Zero stability: The zero stability of the methods in Eq. 14 method one of the root R, = 1 which is the

are determined as the limit as h-0, the difference system  principal root hence, the method is zero stable.
Eq. 14 tends: _
Y. —AY (15) Consistency and convergence: Since .each of the method
o ol inTable 1 has order m>1, the CBHM is consistent and by
Henrici (1962). Convergence = zero stability+ consistency.
Which 1s normalized to obtain the 1st characteristics Hence, the CBHM is convergent.

polynomial p (R) given by:
Stability analysis: The stability properties of the block
(16) formula (Eq. 14) 1s discussed according to Butcher (1965)
and are determined through the application to the test
equation:
Where A, is the identity matrix in [ and A, = A. v =ky, <0 (a7
Following Eq. 6, the block method (Eg. 14) is zero
stable since, P (R) =0 EIIldeél,_] = 0, 1, . 8. Thus for this which y1eld the Stabﬂity polynomial;

p(R) =det|RA, - A [=R'(R -1)

p(t,z)=—t" +t* —2t"z— 2t°z—
164197 2136859873 9179201 9535201 478787
t'z’ 'z’ - t'z’ 'z - t'z*+

86016 - | 1316818944 8128512 8128512 1032192 18)
2556466061 5 o 22634299 ;s 85246939 . . 419453347

5267275776 162570240 627056640 13655900160

3711220123 5 5 L0SS48ST ;5 103293713 45 299477 oo 142633

122903101440 2275983360 20483850240 682795008 292626432

From Eq. 18, we obtain the usual property of A-stability which requires that for all z=hAeC™ and Re (z) <0, P (1, z)
must have a dominant eigenvalue t; such that |t;|<1. From the analysis, we have that the eigenvalues {t,;} = {0, 0, 0,
0,0,..., 0,0, t;) and the dominant eigenvalue, t; is a function of z given by:

27( 13655900160 + 27311800320z + 260679157202° + 15421057680z + 63343520102° +1901281116 2’ +]

B 4194533477 + 651291427" + 5980540z° (19)

368709304320 — 737418608640z + 5983207644407° — 4325167173602 +178952624270z' — 501252001327 +
111336603692° — 1859286834z +1797175807°

t, =

Clearly from Eq. 19, Re (z)<<0, t;<1. Hence, the block method in Eq. 14 is A-stable since, its region of absolute
stability contains the left half-plane {zeC| Re (z)<0}.

Numerical experiment: This study deals with some numerical experiments, executed in Matlab language with double
precision arithmetic which illustrate the result derived in the previous sections.

Example 1: Consider the stiffly linear problem:

v = 20008y, —59994y, y,(0)=1, 0<t<T, vy, =9990y+19997z, v,(0) =0
The eigenvalues of the systems are 4, =-10000 and A, = -1 with exact solution:
1
) =——(29997e "™ 109908 "), vy, (t)=e T —g M0t
il =5555¢ ) ¥, (0
Example 2: Consider the linear SPP (Xiao et al., 2000):

ey, =2y, -y, y,(0) =23, 0<e<<l, 0<t<T, y, =y, —2¥,, v,{0) =1.1
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Table 4: Absolute error for Block hybrid method in Eq. 14 with four
oft-steps at the end point T = 10

Error i = |yy (1]

h Steps Error 1 Error 2

0.1 25 1.61x1071 1.30x107¢
0.01 250 2.20x10710 1.63x107°
0.001 2500 2.25%107° 1.671x10710

Table 5: Absolute error for Block hybrid method in Eq.14 with four
oft-steps at the end point T=1

Error i = |yey ()]

h Error 1 Error 2 Error 3
0.1 3.46x107° 2.43%107° 1.68x107¢
0.01 1.26x107¢ 1.12%107° 1.01x1077
0.001 1.74x107¢ 1.09x10—° 7.46x1078

Table 6: Absolute error for Block hybrid method in Eq. 14 with four
off-steps at the end point T=2

Errer i =%y (1]

h Error 1 FError 2 Error 3

0.1 1.74x107° 1.11x107° 1.97x10710
0.01 8.36x10710 3.84%107%0 9.18x10712
0.001 8.54x10710 3.51x107%0 6.78x10712

With the exact solution:

Yt E) = (e y,(0)+ y,(0)+
2e+1
L -2y, (0))e><p(—(28 + 1)t}
2e+1 £
1 £
B8 = (e, 00+ 7,0+ (5,(0)-

2y2(0))exp[—(28 + 1)£}

It 15 easy to see that the exact solution y; (t, £) and v,
(t, €) approximate to the constants 2/2 e+1 (e 'y, (O)ty, (0)
and 1/2e+1 (& y, (Orty, (0)), respectively after a short time.

Example 3: Consider the Stiffly nonlinear Kap’s problem:

yi=—{e"+2)y, rely; y,(0)=1
0<t<10
Y=Y Y, Y y,(0)=1

Take € = 107", the smaller ¢ is the more sericus, the
stiffness of the system. The exact solution 1s:

vix)=yi(x), y,(x)=e*

Example 4: The last experiment is the system:

Y1’:710Y1 +BY2 » Y1(0):1
Yy =-By,~10y,.y,(0)=1 O0St<T
Yy =—Ys, Y3(0):1

This problem has been extensively studied by
Shampine (1977) and reported that the system 15 stiff
when B = 21, ¥ = 10 and the Jacobian has eigenvalues -
104pi and -y. Tts exact solution is:

v, :e_"(cos(Bt) - sin(Bt))
¥, = e"’(cos(Bt) —sin(Bt))

y,=e’’

We compute the absolute error at the end point for
T =1 and 2 as shown in Table 5 and 6, respectively.

CONCLUSION

A continuous hybrid formula with four off-step
points has been proposed and implemented as a self
starting method for stff ordinary differential equation.
The strength of the method lies in the additional methods
generated from the main method which are simultaneously
implemented n block form without the need for predictors.
The good convergent and stability properties of the
method makes it attractive for numerical solution of stiff
problems. The accuracy of the block method have been
demonstrated on both linear and non-linear problems as
shown in Table 4-6. Although for example 1, the methods
showed poor accuracy for h = 0.1 but the accuracy
improved greatly as the step size reduces.
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