ISOLATION AND CHARACTERIZATION OF ANTIMALARIAL COMPOUNDS FROM ROOT BARK OF CALLICHILIA STENOPETALA STAPF. (FAMILY APOCYNACEAE)

A THESIS SUBMITTED TO

THE SCHOOL OF POSTGRADUATE STUDIES OF THE UNIVERSITY OF LAGOS, NIGERIA, AS PART OF THE REQUIREMENT FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D.) DEGREE IN PHARMACOGNOSY

BY

ORABUEZE, IFEOMA CELESTINA MARICULATION NUMBER: 039095021

SEPTEMBER 2015

DECLARATION

The study, titled "ISOLATION AND CHARACTERIZATION OF ANTIMALARIAL COMPOUNDS FROM ROOT BARK OF CALLICHILIA STENOPETALA STAPF. (APOCYNACEAE)", submitted to the School of Postgraduate Studies, University of Lagos, Lagos, Nigeria for the award of Doctor of Philosophy (Ph.D) Degree in Pharmacognosy, Pharmacy, is an original research carried out by ORABUEZE, IFEOMA CELESTINA, in the Department of Pharmacognosy, Faculty of Pharmacy of the University of Lagos under the supervision of Dr. S. A. Adesegun, Prof. H.A.B. Coker and Dr. S. Ogbonnia. It is hereby declared that this study has not been submitted previously (in whole or in part) to any institution for the purpose of awarding any academic degree.

Dr. S. A. Adesegun

Department of Pharmacognosy, Faculty of Pharmacy of the University of Lagos

Prof. H.A.B. Coker

Department of Pharmaceutical Chemistry, Faculty of Pharmacy of the University of Lagos

Dr. S. Ogbonnia

Department of Pharmacognosy, Faculty of Pharmacy of the University of Lagos

Orabueze, Ifeoma Celestina (Candidate)

DEDICATION

This research work is dedicated to God the almighty, the alpha and finisher of my faith and in lovely memory of a rare gem, late Mrs. Chinyelu Okoli (my late mother). She lives on in the lives she touched while on Earth.

ACKNOWLEDGEMENTS

I would like to convey my gratitude to my supervisors, Dr. Adeleke Adesegun, Professor Herbert Coker and Dr. Sunday Ogbonnia for their guidance, concern, understanding and their support throughout the development of this Ph.D. programme. I thank you all for giving me so much of your precious time and constructive comments towards completion of this dissertation.

I greatly appreciate Professor Andrew Marston (late) and Professor J.H van der Westhuizen for their supervisory role while doing part of the bench work under their supervision at the Natural Product Chemistry laboratory, Department of Chemistry, University of the Free State, South Africa. Prof. Marston was a strong name to be reckoned with in natural product isolation and left behind teams of powerful natural product researchers, working as one big family. Research under him was fun and great experience.

I respectfully appreciate Professor Odukoya (former Dean, Faculty of Pharmacy, University of Lagos) for her constant support both in administrative and academic matters, ensuring that there was always a step forward towards completion of the study. Thank you Ma, I really appreciate your support and "energy drive". I would like to thank the current Dean, Faculty of Pharmacy, University of Lagos, Prof Silva, a great researcher and always ready to listen.

I am grateful for the support and mentorship of Dr. Ajayi, Dr. Olagbende-Dada, Dr. Sofidiya, Dr. Sowemimo, Dr. Oreagba, Dr. Azubike. Your contributions towards the completion of this study are immeasurable. I really appreciate your care and words of encouragement.

My appreciation extends to Professor Bezuidenhoudt and his team (Physical Chemistry department, University of the Free States, UFS) for GC-MS measurements; Professor John Davies (University of Cambridge) for the X-crystallography, Dr. Susan Bonnet (UFS) for useful suggestion in the column chromatography work and during NMR spectra recording.

My profound appreciation goes to Professor Familoni for the fatherly and professional advice received since the time of my MSc. and current Ph.D programme. I appreciate Dr. Aina of NIRM for his very useful suggestions and provision of resourceful materials.

My deepest appreciation is also dedicated to Dr. Kurma, Dr. Achilonu, Matthew, Dr. Anwar, Dr. Rossy, Du for NMR measurements. Without their help, this research work would not have been completed. I also wish to extend my thanks to my friends and colleagues in the Natural product and Phytochemistry laboratories, UFS; Khaya, Talkmore, Du, Kagee, Dr. Agbor, Dr. Le' Deu and Kaycee for those times we had to share each other's joy or stress/frustration in the course of purification and isolation. I would like to thank all my colleagues of the University of Lagos (the present and those already graduated) for the peaceful and friendly academic environment; Dr. Odimegwu, Dr. Alaribe, Dr. Illomuanya, Dr. Oludare, Nkemehule, Dr. (Mrs.) Isreal, Ini Okoko and others.

My kind regards goes to the technical staff that had to work some late evenings and even weekends towards completion of the work, Mr. Duncan, Mr. Adeleke, Mrs. Olorunyomi, Mr. Julius, Mrs. Olarinoye, Miss Umoh, etc. I really appreciate all your help and the extra miles taken on my behalf. The financial support from University of Lagos in the form of staff development tuition free sponsorship, doctoral assistance grant, study leave and the free use of various laboratories within the University premises is gratefully acknowledged and appreciated.

Finally I would like to express my special appreciation to my family, nuclear and extended. Mum, when you predicted that one day I will have my Ph.D, little did I believe you, but then you have always been right in so many things. Regretfully she died at the beginning of the study; I pray that her gentle soul continues to rest in the bosom of God. I miss her greatly. I lovely appreciate my dad, Dr. G. L. Okoli, thank you for the educational foundation you and mum laid for your children. My siblings, Kenny (KK), Onyi, UK, Emmy (CC) and Nnamdi (Nndy), great are the parts you played in my life, my friends and love. I really appreciate you all. My beloved husband, you have been wonderful and so understanding. You covered so well, hours, weeks and months of my not being in the house. I really appreciate you with a lovely heart. My sweethearts; Ogo, Naza, Che-Che and Ify, thanks for your love and understanding and not giving mummy any trouble while she worked towards this goal.

I bow my head in humility, thankful and in gratitude to God for all His blessings.

TABLE OF CONTENTS

		Page
Title p	bage	i
Declar	ration	ii
Dedica	ation	iii
Ackno	Acknowledgement	
Table	of Contents	v
List of Tables		vi
List of Figures		vii
Abstra	ict	1
CHAP	TER ONE	
1.0.	INTRODUCTION	2
1.1.	Background of the study	2
1.2.	Statement of the problem	4
1.3.	Aim and objectives	5
1.4.	Specific objectives of study	5

1.4.	Specific objectives of study	5
1.5.	Significance of study	5
1.6.	Definition of operational terms	6

1.7. List of abbreviations and acronyms	8
---	---

CHAPTER TWO

2.0	LITERATURE REVIEW	10
2.1.	Medicinal plants and biodiversity	10
2.2.	Ethnobotany and Traditional Medicine	13
2.3.	Plants in drug development	16
2.3.1.	Ethnobotanical leads in natural product discovery	16
2.3.2.	Secondary plant metabolites and drug discovery	30
2.3.2.1	. Terpenes	31
2.3.2.2	2. Alkaloids	36
2.4.	Malaria	45
2.4.1.	Introduction	45
2.4.2.	Causative agent life cycle	48
2.4.3.	Transmission	51
2.4.4.	Clinical symptoms	52
2.4.5.	Diagnosis	53
2.4.6.	Treatment/ Management of Malaria	55
2.4.7.	Mechanism of action	59
2.4.8.	Resistance	61
2.4.9.	The health and economic burden of Malaria in Africa	63
2.5.	Antioxidants	64
2.5.1.	Dipheny-1-picryl hydrazyl (DPPH) radical scavenging activity	66
2.6.	Purification, isolation and characterization of bioactive compounds from	
	plant extracts	68

2.6.1. Pu	rification and Isolation of Natural products	68
2.6.2. So	lvent- Solvent Partition/Fractionation	70
2.6.3. Ch	romatographic Methods	70
2.6.3.1.	Thin Layer Chromatography (TLC)	71
2.6.3.2.	Column Chromatography (CC)	72
2.6.3.3.	Vacuum liquid chromatography (VLC)	74
2.6.3.4.	High Pressure Liquid Chromatography (HPLC)	75
2.6.3.5.	Gel permeation chromatography (Size Exclusion Chromatography)	77
2.6.3.6.	Gas Chromatography (GC)	78
2.6.3.7.	Counter-current chromatography	80
2.6.4. Fra	actional Crystallization	80
2.6.5. Ot	ner separation methods	82
2.7. Ch	aracterization and structure elucidation of bioactive compounds	84
2.7.1. Sp	ectroscopic Techniques	84
2.7.1.1.	Nuclear Magnetic Resonance Spectroscopy (NMR)	84
2.7.1.2.	One Dimensional NMR	86
2.7.1.3.	Two dimensional NMR (2D-NMR)	86
2.7.2. Ot	her Spectroscopic methods	88
2.7.2.1.	Gas Chromatography/Mass Spectrometry (GC/MS)	88
2.7.2.2.	Mass Spectrometry (MS)	89
2.7.2.3.	X-ray crystallography	89
2.8. Ni	gerian medicinal plants used for malaria treatment	90

2.8.1. Isolated compounds characterized as antimalarials from Nigerian		
	medicinal plants	92
2.9.	Nigerian medicinal plants having antioxidant activities	95
2.10.	Taxonomy and botanical description of Apocynaceae	97
2.11.	Medical/economic uses of Apocynaceae	99
2.12.	Phytochemistry: alkaloids of Apocynaceae family (Dogbane)	101
2.13.	Genus: Callichilia	107
2.13.1.	Callichilia stenopetala Stapf	107

CHAPTER THREE

3.0.	MATERIALS/ METHOD	117
3.1.	Solvents, Reagents and Equipment	117
3.1.1.	Solvents	117
3.1.2.	Chemicals	117
3.1.3.	Equipment	117
3.1.4.	Reagents	118
3.1.5.	Parasite and animals	119
3.2.	Search and collection of plants	121
3.2.1.	Collection and taxonomical identification of study plant	122
3.2.2.	Pre-extraction preparation of C. stenopetala	122
3.3. Ex	straction and Fractionation of C. stenopetala root bark	122
3.4. Ph	3.4. Phytochemical screening of C. stenopetala	
3.4.1.7	Test for Anthraquinones	124

3.4.2.	.2. Test for phenols and tannins		
3.4.3.	. Test for saponins		
34.4.	Test for alkaloids	125	
3.4.5.	Test for flavonoids	125	
3.4.6.	Test for steroids and triterpenes	126	
3.5.	Pharmacological screening	126	
3.5.1.	Acute toxicity test in mice	127	
3.5.2.	In vivo anti-plasmodial assay of crude extract, fractions and the isolates	127	
3.5.3.	Evaluation of antioxidant activity of crude extract, fractions and the isolates	128	
3.5.4.	Determination of the Total Phenolic Content of the crude extract (TPC)	129	
3.6.	Purification, isolation and spectroscopic characterization of compounds	130	
3.6.1.	Chromatographic materials	130	
3.6.1.1	1. Thin layer chromatography (TLC) plates	130	
3.6.1.2	2. Preparation of the TLC development chamber	130	
3.6.1.3	3. Developing the plates	131	
3.6.1.4	4. Preparation of open column chromatography (CC)	131	
3.6.2.	Separation of chemical constituents of hexane fraction		
	of <i>C. stenopetala</i> (Hex)	132	
3.6.3.	Separation of chemical constituents of chloroform fraction of		
	<i>C. stenopetala</i> (CHCl ₃)	134	
3.6.3.1	1. Recrystallization	134	
3.6.4.	Isolation of chemical constituents of EtOAc fraction	135	
3.6.5.	GC-MS Studies	137	

3.6.6.	Spectro	oscopic analysis	137
3.6.6.1	•	Nuclear Magnetic Resonance spectra (NMR)	137
3.6.6.2		Infrared Spectroscopy (IR)	138
3.6.6.3		X-ray diffraction (crystallography)	138
3.7.	Meltin	g point determination	138

CHAPTER FOUR

4.0.	RESULTS	139
4.1.	Plant search and determination of plant for study	139
4.2.	Extraction of <i>C. stenopetala</i> root bark	145
4.2.1.	Fractionation of <i>C. stenopetala</i> root bark	145
4.3.	Preliminary phytochemical analysis of C. stenopetala root bark	146
4.4.	Pharmacological activity	150
4.4.1.	Acute toxicity	150
4.4.2.	Anti-malarial activity	150
4.4.2.1	Anti-malarial activity of crude extract of <i>C</i> . stenopetala	150
4.4.2.2	2. Anti-malarial activity of the fraction	152
4.4.3.	Antioxidant activity	154
4.4.3.1	Anti-oxidant activity of the crude extract and the fractions	154
4.4.4.	Determination of total phenolic content (TPC)	158
4.4.5.	Antimalarial and antioxidant activities of the isolates	160
4.5. I	Purification, isolation and characterization of antimalarial compounds from	
	active fractions of the crude extract	164

4.5.1.	Hexane fraction: Isolation and spectroscopic results for characterization	
	of compounds 1 and 2	164
4.5.1.1	. Isolation of compound 1	164
4.5.1.2	2. Spectroscopic results for characterization and elucidation of compound 1	168
4.5.1.3	3. Isolation of compound 2	184
4.5.1.4	E: Spectroscopic results for characterization and elucidation of compound 2	185
4.5.2.	Chloroform fraction: Isolation and spectroscopic results for characterization of	
	compound 3	197
4.5.2.1	. Isolation of compound 2	199
4.5.2.2	2. Spectroscopic results for characterization and elucidation of compound 3	194

CHAPTER FIVE

5.0. DISCUSSION	220
SUMMARY OF FINDINGS	235
CONCLUSION	237
CONTRIBUTIONS TO KNOWLEDGE	238
REFERENCES	239
APPENDIX	299

LIST OF TABLES

Table 1: Herbal drugs used in traditional medicine and which have given	
useful modern drugs	27
Table 2: Groups of alkaloid	37
Table 3: Some physiological import alkaloids of Apocynaceae family	105
Table 4: Macromorphological comparison of Callichilia Spp	111
Table 5: Phytochemical screening	124
Table 6: List of some medicinal plants used in treatment of malaria fever	141
Table 7: Suppressive activity of some antimalarial medicinal plants crude extracts at 500 mg kg ⁻¹	142
Table 8: DPPH free radical scavenging activity of some antimalarial	
medicinal plants crude extracts	143
Table 9: Bio-activities summary of some antimalarial medicinal plants crude extracts	144
Table 10: Liquid – Liquid fractionation of crude extract of <i>C. stenopetala</i> root bark	145
Table 11: Phytochemical screening of the crude extract of C. stenopetala root bark	146
Table 12: Alkaloidal content of the fractions	148
Table 13: TLC results of alkaloidal content of chloroform (CHCl ₃) fraction	149
Table 14: Suppressive activity of crude extract of C. stenopetala root bark	
on parasitaemia in mice	151
Table 15: Anti-malarial activity of fractions C. stenopetala on parasitaemia in mice	153
Table 16: DPPH Free radical scavenging activity of the crude extract and Vit C	155
Table 17: Calibration data for gallic acid	157
Table 18: Antimalarial activity of the isolates on parasitaemia in rats	161
Table 19: Summary of bioactivity profile of the isolates	162

Table 20: 13 C NMR and 1 H-NMR main signals for compound 1	182
Table 21: 13 C NMR and 1 H-NMR main signals for compound 2	196
Table 22: TLC results of Chloroform fraction	199
Table 23: TLC results of test tube/fraction 34 from chloroform fraction (Figure 47)	200
Table 24: ¹³ C NMR and ¹ H-NMR main signals for compound 3	218

LIST OF FIGURES

Figure 1: Estimated incidence of malaria per 1000 population in the year 2000	47
Figure 2: Causative agent life cycle	49
Figure 3a: Ring stage of "Plasmodium falciparum" in human red blood cells	54
Figure 3b: Stained thin blood film showing Plasmodium falciparum infection	54
Figure 4: Equipment for measuring Nuclear Magnetic Resonance (NMR)	85
Figure 5a: <i>Callichilia</i> spp microscopy (a)	109
Figure 5b: <i>Callichilia</i> spp microscopy (b)	110
Figure 6: Callichilia stenopetala plant showing leaf arrangement	114
Figure 7: Callichilia stenopetala plant showing its fruits	115
Figure 8: Callichilia stenopetala showing its flower	116
Figure 9: Schematic representation of extraction and partitioning of crude extract	123
Figure 10: Isolation scheme of compounds 1 and 2	133
Figure 11: Isolation scheme of compound 3	136
Figure 12: TLC chromatograms showing the alkaloidal content of	
various fractions of <i>C. stenopetala</i>	147

Figure 13: TLC chromatograms of the CHCl ₃ fraction of <i>C. stenopetala</i> showing	
alkaloidal content	149
Figure 14: DPPH Free radical scavenging activity of crude extract and Vit C	156
Figure 15: DPPH Free radical scavenging activity of fractions of C. stenopetala	
root bark	157
Figure 16: Calibration curve for Gallic acid	158
Figure 17: DPPH free radical scavenging activity of the isolates	163
Figure 18: TLC Chromatogram of hexane fraction (1)	164
Figure 19: TLC Chromatogram of hexane fraction (2)	165
Figure 20: TLC of re-chromatogram of C_2 of hexane fraction	166
Figure 21: TL Chromatogram, Illustration of the level of purity of compound 1 after	
recrystallization	167
Figure 22: ¹ H NMR spectrum of compound 1	170
Figure 23: ¹³ C NMR spectrum of compound 1	171
Figure 24: APT spectrum of compound 1	172
Figure 25: GC-MS spectrum of compound 1	173
Figure 26: IR spectrum of compound 1	174
Figure 27: NOESY spectrum of compound 1	175
Figure 28: COSY spectrum of compound 1	176
Figure 29: HMBC spectrum of compound 1	177
Figure 30: HSQC spectrum of compound 1	178
Figure 31: 3 Dimensional ball and stick minimized energy mode for compound 1	179
Figure 32: 3 Dimensional ball and stick minimized energy mode for compound 1	180

Figure 33: 3 Dimensional ball and stick minimized energy mode for compound 1	181
Figure 34: The structure of compound 1	183
Figure 35: Illustration of the level of purity of compound 2 after recrystallization	184
Figure 36: 13 C NMR spectrum of compound 2	187
Figure 37: ¹ H NMR spectrum of compound 2	188
Figure 38: ATP spectrum of compound 2	189
Figure 39: GC-Mass spectrum of compound 2	190
Figure 40: IR spectrum of compound 2	191
Figure 41: NOESY spectrum of compound 2	192
Figure 42: COSY spectrum of compound 2	193
Figure 43: HMBC spectrum of compound 2	194
Figure 44: HSQC spectrum of compound 2	195
Figure 45: Structure of compound 2	197
Figure 46: TLC chromatogram of chloroform fraction	199
Figure 47: TLC chromatogram of open column chromatography of CHCl ₃ fraction	200
Figure 48a and b: TLC chromatogram of open column chromatography of	
EtOAc fraction	201
Figure 49: TLC chromatogram of compound 3	202
Figure 50: ¹ H NMR spectrum of compound 3	205
Figure 51: ¹³ C NMR spectrum of the compound 3	206
Figure 52: APT spectrum of compound 3	207
Figure 53: Expanded APT spectrum of compound 3	208
Figure 54: IR spectrum of compound 3	209

Figure 55: GC Mass spectrum of compound 3	210
Figure 56: NOESY spectrum of compound 3	211
Figure 57: COSY spectrum of compound 3	212
Figure 58: HMBC spectrum of compound 3	213
Figure 59: HSQC spectrum of compound 3	214
Figure 60: 3 Dimensional Ball and Stick minimized energy mode for compound 2	215
Figure 61: 3 Dimensional Ball and Stick minimized energy mode for compound 2	216
Figure 62: 3 Dimensional ball and stick minimized energy mode for compound 2	217
Figure 63: Structure of compound 3	219