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ABSTRACT 

Compliant mechanisms (CMs) above the traditional rigid-body mechanisms have the 

sole merit of no relative moving parts hence preventing any form of wear, backlash, 

noise and need for lubrication. Its applications are versatile and fully domicile in such 

sectors as medicine, robotics, aerospace, biomechanics, food processing and 

automotive industries to mention a few. The Pseudo Rigid Body (PRB) equivalence of 

compliant mechanisms have been the conventional approach used by earlier researchers 

to analyse compliant mechanisms. Attempts at direct analyses often assume linearity 

and static conditions. These are justifiable in several situations where compliant 

mechanisms have been successful in replacing materials with several moving parts.  

The application domain of compliant mechanisms is widening to dynamic environment 

where the deformations are relatively large.  It is therefore necessary to consider 

nonlinearities resulting from geometry and hyperelasticity. This work presents a 

systematic model for the analyses of compliant mechanisms. Methods of continuum 

mechanics and finite element method were used to model compliant mechanisms.  

Static and dynamic analyses were carried out using the proposed model. Compliant 

mechanism (CM) examples are presented. Results from linear, geometric nonlinear 

together with combined geometric and material nonlinearities assumptions were 

compared with published laboratory investigated compliant mechanisms. It is revealed 

that while geometric nonlinear or even linear model could capture the CM output 

displacement when input load or displacement is 20% of the total input, the results 

obtained herein have shown that for large input load or displacement, the only reliable 

result is that from hyperelasticity. The dynamic analysis of CMs show that neglecting 

material nonlinearity could lead to failure due to end point effect. A Continuum 

Damage Mechanics (CDM) model is also proposed to assess the fatigue life of 

polymeric compliant material. The elastic strain energy is computed on the basis of a 

nearly incompressible hyperelastic constitutive relation. The damage evolution 

equation is used to develop a Mathematical formula that describes the fatigue life as a 
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function of the nominal strain amplitude.  Fatigue tests experiment were conducted on 

polymeric compliant materials. The result from the prediction formula shows a strong 

agreement with that of experiment. It was established that for strain amplitude lower 

than 0.100 mm/mm, the developed model is more appropriate to predict the fatigue life 

of polymeric CMs than other compared models. It is expected that the models and 

results presented here will have a wide spectrum of applications and will effectively 

facilitate the process of design and optimization of compliant mechanisms. 
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1 
 INTRODUCTION 

A mechanism is defined as a mechanical device that transfers forces and motions from an input 

source to output link (Erdman and Sandor, 1991). As shown in Fig. 1.1(a), a conventional rigid-

link mechanism is designed to obtain mobility exclusively from rigid body translations and 

rotations using revolute joints, prismatic joints, and higher order pairs which couple the relative 

motions of the members. Fig. 1.1(b) is its compliant counterpart that has one of its links 

sensibly deformable.  

 

 

Fig. 1.1(a): A Conventional Rigid Link Mechanism 

 

 

Fig. 1.1 (b): Compliant Mechanism 
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Traditional mechanisms are engineered to be strong and rigid. The use of flexibility has 

primarily been avoided due to the increased difficulty in accounting for flexibility and 

the large potential or performance degradation, such as decreased efficiency, positional 

inaccuracies, and structural instabilities. In contrast, biological designs such as the 

thorax of a honeybee or the leg of a grasshopper are strong and compliant. By opposing 

traditional engineering techniques, nature has found clever methods to produce “bio-

mechanical devices” which achieve functionality by taking advantage of structural 

compliance (Vogel, 1998). To parallel biological design, a compliant mechanism is 

defined as a mechanism which exploits flexibility from one or more of its members to 

achieve controlled transmission of forces and motions. Fig. 1.2 illustrates a monolithic 

compliant gripper which closes and exerts force on an object in response to an applied 

input force. The main challenge in designing a compliant mechanism is to effectively 

synthesize the most efficient structural form (topology, size, and shape) given the 

functional requirements. 

 

Fig. 1. 2: Illustration of a Compliant Gripper Mechanism 

 

1.1 Background to the Study 

Fully compliant mechanisms can be viewed as flexible continua and can be treated as 

such in their synthesis and analysis (Ananthasuresh and Frecker, 2001). Large and small 
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deformations of a flexible body can be modelled in the body’s actual continuum form 

instead of Pseudo Rigid Body Models. As such compliant mechanisms can be modelled 

using the methods of continuum mechanics (Ananthasuresh and Frecker, 2001).The 

basic idea in the design of compliant mechanism is to recast the design problem as an 

optimal material distribution problem so that the resulting continuum structure can 

fulfil the requirements of a mechanism and thus, it is called continuum compliant 

mechanism (Wang and Cheng, 2009). In this work, we modelled compliant 

mechanisms using the methods of continuum mechanics. Since the material comprising 

compliant mechanisms will generally undergo finite strains, displacements, and 

rotations when the mechanism functions under normal design actuation forces, the 

analysis and design framework must be general enough to treat finite deformation 

effects (Swan and Rahmatalla, 2004). 

 

In recent years, the research on the design and analysis of compliant mechanisms has 

made great progress, at the same time, it has faced many challenges. Compliant 

mechanisms rely on elastic deformation to achieve force and motion transmission, such 

deformations are not necessarily small (Howell, 2001). When a structure undergoes 

sufficiently large deformation, the structure exhibits nonlinear behaviour. This 

nonlinear behaviour comes from two different sources, namely geometry and material. 

The former makes it necessary to include nonlinear terms in the displacement-strain 

relations and the latter results in the failure of linear material model. Although most 

successful examples of compliant mechanism design and analysis by nonlinear 

formulation were reported, majority of the designs were based only on nonlinearity due 

to geometry. The use of linear material model may not be valid in practice because 

materials with large compliance are often nonlinear materials (Sigmund, 2001a and 
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2001b). Most engineering materials exhibit nonlinear behaviour when the deformation 

is sufficiently large. The design and analysis of compliant mechanism should take the 

material nonlinearity into account because the functionalities of the complaint 

mechanism are accomplished from its large deformation (Jung and Gea, 2002).  

 

Polymers are commonly used in the design of compliant mechanisms (Howell, 2001). 

It is important to use the nonlinear characteristics of polymers to analyse the 

performance of compliant mechanism. Thermoplastic polymers like polypropylene 

exhibit a viscoelastic material response (Mankame and Ananthasuresh, 2004).  It has 

been frequently noted that with certain constitutive laws, such as those of viscoelasticity 

and associative plasticity, the material behaves in a nearly incompressible manner 

(Zienkiewicz and Taylor, 2000). Polymers have small volumetric changes during 

deformation and as such are incompressible or nearly-incompressible materials 

(ANSYS, 2012).  In general, the response of a typical polymer is strongly dependent 

on temperature (Bower, 2010). At low temperatures, polymers deform elastically, like 

glass; at high temperatures the behaviour is viscous, like liquids; at moderate 

temperatures, the behaviour is like a rubbery solid. Hyperelastic constitutive laws are 

intended to approximate this rubbery behaviour. Polymers are capable of large 

deformations and subject to tensile and compression stress-strain curves (Gong and 

Moe, 2002). The simplest, yet relatively precise description for this type of material is 

isotropic hyperelasticity (Gong and Moe, 2002). Nearly incompressible hyperelasticity 

model is employed to reproduce the elastic responses for the constitutive theory of finite 

viscoelasticity (Marvalova, 2006) 

. 
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 1.2 Statement of the Problem 

Designing a compliant mechanism (CM) for a specific application can be a complex 

problem. The basic trade-off is between the flexibility to achieve deformed motion and 

the rigidity to sustain external load (Li and Kota, 2002).  Many researchers have 

proposed various synthesis techniques for creating a viable CM, including topology and 

shape optimization methods. Many of these methods for topology and dimensional 

synthesis were based on kinetostatic design specifications and do not consider the 

dynamic effects in the design stage.  The resulting designs are therefore valid for static 

or low frequency applications. The dynamic effects can be significant and for instance, 

a CM may exhibit a very different mechanical advantage at high frequencies compared 

to what it was designed for under static situations (Li and Kota, 2002).  In fact, the 

impact of dynamic behaviour is of great importance in improving the design of CMs, 

especially for complex mechanisms such as aircraft systems and micro-electro 

mechanical systems (MEMS). To improve on the performance and operation accuracy 

of such compliant mechanisms, the dynamic and static analysis of CMs need to be 

further studied. However, to get the most reliable result, both the material and geometric 

nonlinearities must be incorporated into the model.  

 

1.3 Aim and Objectives of the Research 

This research is aimed at reducing risk of failure of compliant mechanisms due to 

improper analysis. The objectives of the research are: 

i. To develop a model that can adequately capture the effect of geometric 

and material nonlinearities to the analysis of CMs. 

ii. To investigate the combined effect of geometric and material 

nonlinearities to the analysis of CM. 
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iii. To investigate the influence of shear deformation in the nonlinear 

analysis of CMs. 

iv. To develop a mathematical model for the fatigue failure prediction of 

polymeric CMs at any strain cycle. 

 

1.4 Scope of the Research 

This research is concerned with the incorporation of both geometric and material 

nonlinearity to the analysis of compliant mechanisms. Throughout this work, compliant 

mechanisms with the following characteristics are considered: 

 Since most compliant mechanisms are designed for planar manipulation, we 

will focus on two dimensional problems in this research.  

 Compliant mechanisms idealized as flexible continuum 

 The material response is considered as being isotropic. 

 The operating condition is moderate temperature. 

  

1.5 Significance of the Study 

When compliant mechanisms are used over time, they have tendency to deform as a 

result of stress, fatigue, temperature and other mechanical and environmental factors. 

Compliant mechanisms are used by different industries for different tasks. Different 

applications of compliant mechanisms have different deformation limit. It is important 

for the users of such systems to have indicators of the permissible deformation limit of 

such systems in order to avoid catastrophic failure especially in mission critical 

systems/industries such as aerospace systems, surgery in medicine etc. Our proposed 

model will help the developers of compliant mechanisms to incorporate sensor based 

indicators capable of predicting the deformation limit which can guide the users of such 
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systems to understand the deformation behaviour of the compliant mechanism. This 

work will show great significance in reliability and safety of CMs using proper 

methodology. 

 

1.6 Definition of Terms 

Anisotropy Variation of material properties with direction. Both global 

and local user defined coordinate systems can be used to 

define anisotropic material properties. 

 

Body Forces Forces distributed through the volume of a body. 

 

Cauchy Stress The most fundamental stress measure defined as 

force/deformed area in fixed directions not following the 

body. 

 

Compliant Mechanism Flexible mechanisms that transfer an input force or 

displacement to another point through elastic body 

deformation. 

 

Constitutive Equations The equations formulating the stress-strain relationship of a 

material. 

 

Constraint Constrains the displacement or rotations to zero or a 

specified value. 

Contact Model  The Mathematical method to model bodies that come into 

contact with each other. 

 

Continuum  A body that can be continually sub-divided into 

infinitesimal elements with properties being those of the 

bulk material. 

 

http://en.wikipedia.org/wiki/Mechanism_%28technology%29
http://en.wikipedia.org/wiki/Displacement_%28vector%29
http://en.wikipedia.org/wiki/Deformation_%28engineering%29
http://en.wikipedia.org/wiki/Infinitesimal
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Continuum Damage 

Mechanics  

Concerned with the representation, or modelling, of damage 

of materials that is suitable for making engineering 

predictions about the initiation, propagation, and fracture of 

materials. 

 

Continuum Mechanics  A branch of mechanics that deals with the analysis of the 

kinematics and the mechanical behaviour of materials 

modelled as a continuous mass rather than as discrete 

particles. 

 

Coordinate System Global Cartesian, local geometrical, application specific, 

and user-defined coordinate systems. Loads, constraints, 

material properties, and variables are defined in a specific 

coordinate system. 

 

Cycle Counting  

 

Method that transforms an arbitrary load cycle into a well-

defined stress description. 

 

Cycles to Failure  Limiting number of repeatable load cycles that will cause 

fatigue. 

 

Damage Accumulated state in the material that degrades the 

performance of the structure. A microstructural change that 

results in a deterioration of material properties 

 

Damage Parameter  Explains how much of the material that is damaged 

 

Deformation  The change in shape and/or size of the body from an initial 

or undeformed configurations. 

 

Deformation Gradient Tensor containing the complete information about the local 

straining and rotation of the material. It is a positive definite 

second rank tensor. 

http://en.wikipedia.org/wiki/Mechanics
http://en.wikipedia.org/wiki/Kinematics
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Endurance Limit / 

Fatigue Limit 

The highest repeatable stress a material can be subjected to 

and not experience any fatigue. An attention should be made 

to weather the endurance limit is the maximum stress or the 

amplitude stress. Both stress measures are given by material 

data providers. 

 

Elasticity Matrix The matrix relating strain to stresses. 

 

Equilibrium Equation The equation expressing the equilibrium formulated in the 

stress components. 

 

Eulerian Model described and solved in a coordinate system that is 

fixed (spatial frame). 

 

Fatigue A term describing the phenomena where a component fails 

after repeated loadings and unloadings. The progressive and 

localized structural damage that occurs when a material is 

subjected to cyclic loading. 

 

Fatigue Life  The number of applied repeated stress cycles a material can 

endure before failure. 

 

Geometric Nonlinearity In solid mechanics, the deformation state characterized by 

finite (or large displacements) but small to moderate strains. 

Sometimes referred to as nonlinear geometry. 

 

Green-Lagrange Strain Nonlinear strain measure used in large-deformation 

analysis. 

 

Hyperelasticity  A constitutive relation used to model rubbers and rubbery 

materials. 
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Isotropic Material A material where the material properties are independent of 

direction. 

 

Lagrangian Model described and solved in a coordinate system that 

moves with the material. 

 

Large Deformation The deformations are so large so that the nonlinear effect of 

the change in geometry or stress stiffening need to be 

accounted for. 

 

Load Cycle A well-defined load history that after sufficient number of 

repetitions can lead to fatigue. 

 

Mechanism A system of moving parts that changes an input motion and 

force into a desired output motion and force. 

 

Mixed Formulation A formulation used for nearly incompressible materials, 

where the mean stress have been added as a dependent 

variable to avoid numerical problems. 

 

Material Nonlinearity The type of nonlinearity that arises when a material exhibits 

non-linear stress-strain relationship. 

 

Principle of Virtual 

Work 

States that the variation in internal strain energy is equal to 

the work done by external forces. 

 

Pseudo Rigid Body 

Model 

A way of representing CMs using their rigid body 

components that have equivalent force-deflection 

characteristics. 

 

Rubbery  A way of depicting nonlinear materials that exhibit 

nonlinear constitutive characteristics of rubber. 
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Second Piola-Kirchhoff 

Stress 

Conjugate stress to Green-Lagrange strain used in large 

deformation analysis. 

 

Strain Energy  The energy stored by a structure as it deforms under load. 

Strain  Relative change in length, a fundamental concept in 

structural mechanics. 

 

Stress Internal forces in the material, normal stresses are defined 

as forces/area normal to a plane, and shear stresses are 

defined as forces/area in the plane. 

 

Time-Dependent Study 

 

 

A time-dependent or transient study shows how the solution 

varies over time, taking into account mass, mass moment of 

inertia, and damping. 

 

 

1.7      Organisation of the Thesis 

This thesis consists of six chapters and each chapter is divided into sections and 

subsections. These provide a detailed description of the subject matter and make for 

easy reading and referencing. The chapters of the thesis are itemised below: 

 Chapter One introduces the constructal theory and presents the motivation, 

justification and background of the study. 

 Chapter Two provides literature reviews on the subject of basic theory with the 

focus on the assumptions taken in the analysis of compliant mechanism by early 

researchers. 

 Chapter Three contains the detailed methodology for the problem to be solved. 

This includes the nonlinear finite element and detailed continuum mechanics 

formulations.  
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 Chapter Four deals with the experimental set up for the fatigue prediction test 

that includes the test sample, Electroforce machine and Wintest interface. 

 Chapter Five shows the results generated from the respective models and the 

validation from laboratory published results. 

 Chapter Six provides a general summary of the findings of the study. It also 

presents the conclusions and contributions, as well as recommendations for 

future work.  



 

13 
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 LITERATURE REVIEW 

The literature review is divided into many parts. First the history, classification, applications 

and other preliminary review of compliant mechanisms, methodology and solution are 

introduced. Finally, review of prior and related works on compliant mechanisms were carried 

out.  

 

2.1 History of Compliant Mechanism 

Mother Nature has used compliance since the beginnings of life in things such as plants, bird 

wings and legs of small insects. Inventions inspired from nature, have used deflections in their 

mechanism designs. For example, bows (Fig. 2.1) and catapults rely on the energy stored in a 

deflected beam to propel their missiles across long distances. Tweezers grasp small objects 

between two flexible beams. Various types of springs and some hinges also use deflections to 

achieve the motion desired. 

 
Fig. 2.1: Historical Bow 
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The ability of mankind to synthesize the design of compliant mechanism has only existed for 

a short time. Euler was the first to quantify the deflection of flexible beams with the 

development of the Bernoulli-Euler equation (Howell, 2001).  

 

A compliant mechanism can be defined as single piece flexible structure, which uses elastic 

deformation to achieve force and motion transmission (Frecker et al., 1997; 1999). It gains 

some or all of its motion from the relative flexibility of its members rather than from rigid body 

joints alone (Howell, 2001). Such mechanism, with built-in flexible segments, is simpler and 

replaces multiple rigid parts, pin joints and add-on springs. Hence, it can often save space and 

reduce costs of parts, materials and assembly labour. Fig. 2.2 illustrates a monolithic compliant 

gripper which closes and exerts force on an object in response to an applied input force. The 

main challenge in designing a compliant mechanism is to effectively synthesize the most 

efficient structural form (topology, size, and shape) given the functional requirements. 

 
 

Fig. 2.2: Compliant gripper mechanism 

 

Other possible benefits of designing compliance into devices may be reductions in weight, 

friction, noise, wear, backlash and importantly, maintenance. There are many familiar 

examples of compliant mechanisms designed in single-piece that has replaced rigid-link 

mechanisms, which will be highlighted in other section in this study. Fig. 2.3, shows examples 

of compliant mechanisms commonly used.  
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Fig. 2.3: Common compliant devices; a binder clip, paper clip,  

backpack latch, lid, eyelash curler and nail clippers 

 

We can simply manufacture a single-piece fully compliant mechanism via injection moulding, 

extrusion and rapid prototyping for medium size devices (Mortensen et al., 2000), or using 

silicon surface micromachining (Larsen et al., 1997) and electroplating techniques (Chen, 

2001) for compliant micromechanisms. Although a compliant mechanism gives numerous 

advantages, it is difficult to design and analyse. Much of the current compliant mechanism 

design, however, must be performed without the aid of a formal synthesis method and is based 

on designer’s intuition and experience (Sigmund, 1997; Frecker, 1997; Solehuddin et al., 

2002). Several trial and error iterations using finite element models are often required to obtain 

the desired mechanism performance. 

 

2.2 Classification of Compliant Mechanisms 

 

Compliant mechanisms can be classified by the various rigid and flexural elements which make 

up the device (Ananthasuresh et al., 1994) as shown in Fig. 2.4. Partially compliant 

mechanisms contain rigid mechanical members and conventional joints combined with 

compliant members. Fully compliant mechanisms contain no mechanical joints and gain 

mobility strictly from elastic deformation. 
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(a)   Partially Compliant Mechanism          (b)   Partially Compliant Mechanism    

               Lumped Compliance        Distributed Compliance 

 
     

     
(c) Fully Compliant Mechanism                  (d)   Fully Compliant Mechanism      

       Lumped Compliance             Distributed Compliance 
 

Fig. 2.4:  Classification of Compliant mechanism 

  

A compliant member can facilitate elastic deformation by concentrating strains in small 

regions or more evenly distributing strains throughout the structure. Lumped compliant 

mechanisms which concentrate strains in small regions are characterized by thin 

flexural segments which can model the behaviour of revolute joints. Distributed 

compliant mechanisms do not contain the characteristic thin flexible segments, but 

rather distribute the strain more-or-less uniformly along the flexible members. 

Distributed compliant mechanisms are advantageous over lumped compliant 

mechanisms in that stress concentrations are generally avoided. 

 

2.3 Applications of Compliant Mechanisms 

New competitive products must meet the growing demands of the market. They must 

be light-weighted, resource efficient, durable, stable and have a low noise emission. At 
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the same time, the products must be introduced quickly into the market. For the 

fulfilment of these demands, it is necessary to use the advantages of compliant 

mechanisms. Compliant mechanisms are applicable in various fields such as adaptive 

structures, components in transportations, hand-held tools, electronics, robotics, 

medical, etc. for numerous reasons. 

 

2.3.1 Adaptive Structures  

Adaptive structures have the ability to adapt, evolve or change their properties or 

behaviour in response to the environment around them. The analysis and design of 

adaptive structures requires a highly multi-disciplinary approach which includes 

elements of structures, materials, dynamics, control, design and inspiration taken from 

biological systems. Development of adaptive structures has been taking place in a wide 

range of industrial applications, but is particularly advanced in the aerospace and space 

technology sector with morphing wings, deployable space structures; piezoelectric 

devices and vibration control of tall buildings. 

 
 

Fig. 2.5: Basic Building Block for NASA Goddard’s Compliant Mechanisms 

 

Example include Compliant Cable Technology that was developed by National 

Aeronautics and Space Administration (NASA) Goddard Space Flight Centre. In 
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structural connections, these mechanisms provide compliance and dampening. They 

permit motion in the primary direction and selective motion in other directions. This 

provides subtle cushioning, twisting and realignment, which allows mating and contact 

surfaces to conform to each other. The essential functional element-the bending 

element-of NASA Goddard's compliant mechanism consists of a short cable section.  

   

 

The configuration and material are varied according to the specific application 

requirements (Barghout, 2003). The bending element is constrained at each end in 

cantilever fashion (Fig. 2.5).  A snap-fit mechanism can be engaged by simply pushing 

the two counter parts together. However, it is not a favoured choice in design for 

disassembly since it is often difficult to disengage without making any destruction to 

the components. Li et al. (2002) have demonstrated the design of reversible snap-fit 

compliant mechanism, which actuated with localized thermal expansion of materials 

through time transient heat transfer within the structure. Compliant mechanical 

amplifiers are used for piezoelectric actuators to increase effective stroke of the actuator 

(Canfield and Frecker, 2000; Frecker and Canfield, 2000). Furthermore, the actuators 

designed may be used in smart structures applications such as helicopter rotor blade 

control.   

 

2.3.2 Biomechanical Application 

Motivated by the successful application of compliant mechanisms in robotics and 

automation, its extension to biomechanics are now emerging and several cutting-edge 

research topics are currently been studied. We introduce some of these topics in the 

following sections. 
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2.3.2.1    Compliant Prosthetic Sockets 

The geometry of the residual limb, liner and socket were acquired from computed 

tomography (CT) data of a transtibial amputee. The compliant features consisted of 

thin-wall sections and two variations of spiral slots integrated within the socket wall 

(Fig. 2.6).  

  
       (a) Side View             (b) Frontal View 

 

Fig. 2.6: Compliant support Prosthetic Sockets 

 

One version of the spiral slots produced the largest pressure relief, with an average 

reduction in local interface pressure during single-leg stance (20–80% of the stance 

phase) from 172 to 66.4 kPa or 65.8% compared to a baseline socket with no compliant 

features. The integration of local compliant features is an effective method to reduce 

local contact pressure and improve the functional performance of prosthetic sockets 

(Mario et al., 2006). 

 

2.3.2.2       Biosensors 

Micro cantilever beams have recently found applications in bio-medical research. Wu 

et al., (2001) developed a cantilevered microscopic chip to detect prostate specific 

antigen (PSA) in human blood. As PSA sticks to the antibodies, the cantilevered chip 
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bends like a diving board as shown in Fig. 2.7(a), where the left cantilever bends as the 

protein PSA binds to the antibody. The other cantilevers, exposed to different proteins 

found in human blood serum (human plasminogen (HP) and human serum albumin 

(HSA)), do not bend because these molecules do not bind to the PSA antibody. The 

cantilevers themselves are about 50 microns wide (half the width of a human hair), 200 

microns long (a fifth of a millimetre), and half a micron thick. The micro-cantilever 

technique has applications beyond prostate cancer. Any disease, from breast cancer to 

AIDS, with protein or DNA markers in blood or urine could conceivably be assayed by 

arrays of these micro-cantilevers. 

 
(a) Cantilever Sensors    (b) Molecular Motors 

 

Fig. 2.7: Biosensors 

 

Another application of micro cantilever beams is shown in Fig. 2.7(b). The array of 

micro cantilever beams, coated with a monolayer of edox-controllable (Huang et al., 

2004) rotaxane molecules, undergoes controllable and reversible bending when it is 

exposed to chemical oxidants and reductants. Conversely, beams that are coated with a 

redox-active but mechanically inert control compound do not display the same bending. 

The capability of transferring chemical energy to mechanical energy in this micro 

cantilever has potential of reduced scale operations compared with traditionally micro 

scale actuators. 
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2.3.3 Components in Transportations  

 

An aircraft wing based on a compliant mechanism would bend and twist as a single 

piece to control flight, eliminating separate control surfaces such as ailerons, spoilers 

and flaps. This, in turn, simplifies construction and yields potentially much higher 

performance (Sanders, 2003). This design modification have the following benefits:  

 Reduces radar cross-section thereby improving stealth characteristics; reduces 

weight and complexity; and increases aircraft maneuverability. 

 
Fig. 2.8: Overrunning pawl clutches 

 

 

 
 

Fig. 2.9: Bicycle brakes 

 

 Over-running pawl clutches (Roach, 1998; Roach et al., 1998; Roach and Howell, 

1999), with or without centrifugal throw out, provide torque in one direction but 

freewheel in the other. They are used for one- and two-way rotation, as in pull-starts 

for small engines, bicycle and “Big Wheel®” free wheels, fishing reels, gear drives, 
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winches, conveyors, elevators, counters, collators, feed mechanisms and many other 

machines (Howell, 2003(a)) (Fig. 2.8). 

 Centrifugal clutches made as compliant mechanisms eliminate numerous segments, 

springs, pins, rivets, etc. Flexible segments are designed into the single moving part 

so that when the hub (driven by a motor) spins the clutch up to speed, centrifugal 

force causes the heavy segments to engage the drum and drive the machinery. Small 

and medium horsepower applications include gokarts, mini-bikes, trimmers, tillers, 

chain saws, chippers, amusement rides, agriculture and industrial machine couplings 

(Howell, 2003(b)). 

 Bicycle brakes of compliant design provide absolute parallel motion, have visual 

appeal and are preferred by experts for their strength, superior control, even wear 

and reduced noise (Mary, 2003). See example in Fig. 2.9. 

 

2.3.4 Hand-Held Tools 

Monolithic stapler helps in simplifying the design for assembly (DFA) and designs for 

manufacture (DFM) as shown in Fig. 2.10 (Ananthasuresh, 2003).  

 
 

Fig. 2.10: The number of separated parts in previous stapler (right) 

Monolithic Stapler (left) 

 

Vibration damping for power tools: Reciprocating tools such as jackhammers, rivet 

guns and hammer drills can cause repetitive motion injuries such as nerve damage and 
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carpal tunnel syndrome. The vibration transmitted from the tool while it is operating 

causes the damage. Cable compliance technology can effectively reduce this vibration 

through shock isolation. Because it is small, this NASA technology can also be applied 

to hand tools (Barghout, 2003). 

 

2.3.5 Electric and Electronic (EE) Systems 

Microelectromechanical Systems (MEMS) are small, compliant devices for mechanical 

and electrical applications. MEMS are fabricated using techniques developed for the 

production of computer chips. Most MEMS devices are barely visible to the human eye 

with many features 1/50 the diameter of a human hair. However, they can perform 

micromanipulation tasks by converting thermal, electrostatic, mechanical, optical, 

electromagnetic or electrical energy to some form of controlled motion. Examples of 

MEMS application are medical instruments for in-body surgery, hearing aids, air-bag 

sensors, micro pumps and optics and tilting mirrors for projection devices (Sigmund, 

1997).  

 
 

Fig. 2.11: Bistable (2- position) mechanisms 

 

Near-constant-force (NCF) electrical connectors use compliant technology to maintain 

constant connection between electrical connections over long periods of time. The 

majority of computer hardware and automotive electrical problems arise from faulty 

electrical contact integrity. The NCF electrical connector improves connections and 
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reliability (Howell, 2003(c)). Bistable (2-position) mechanisms move between two 

stable conditions (Open and Close positions, as in Fig.  2.11) and are useful as switches, 

circuit breakers, clamps, snap hinges, closures, positioning devices, etc. Though they 

require external force to move from position 1 to 2, no holding energy is required to 

remain in either position. Plastic prototypes have exceeded a million cycles in durability 

tests (Howell, 2003(c)). 

 

2.3.6 Vibration Isolation Systems 

 Compliant mechanisms have been designed for various types of applications to 

transmit desired forces and motions. Tantanawat et al. (2004) explore an application of 

compliant mechanisms for active vibration isolation systems. For this type of 

application, an actuator and a compliant mechanism are used to cancel undesired 

disturbance, resulting in attenuated output amplitude.  An actuator provides external 

energy to the system while a compliant mechanism functions as a transmission 

controlling the amount of displacement transmitted from the actuator to the payload to 

be isolated. They proposed compliant mechanisms as a means to provide efficient and 

low cost active vibration isolation. Fig. 2.12(i) shows the use of compliant mechanism 

as a substitute to the usual springs and dampers in Fig. 2.12(ii). 

        
(a) Feed Forward Control             (b) Feed Back Control 

 

Fig. 2.12(i): Models illustrating the concept of using a compliant mechanism in 

an active vibration isolation system 
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 (a) (b)  

 (c)   

 

Fig. 2.12(ii): Simple models showing basic elements in different types of vibration 

isolation systems;    (a) active, (b) passive, and (c) semiactive system 

 

 

2.3.7 Automotive Seat Cushion 

Jutte (2008) explored the use of nonlinear spring to replace the foam of the automotive 

seat cushion. The initial design was able to reduce the foam thickness to less than half 

of its original size without compromising the passenger’s comfort and safety. Fig. 2.13 

shows the automotive seat cushion and its compliant counterpart of equal strength.  

 

   

Fig. 2.13: (a) Automotive Cushion                 (b) Compliant Nonlinear Spring Seat 

 
 

(b) 
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2.3.8 Live Bird Transfer System 

Fig. 2.14 shows a live bird transfer system (Chao-Chieh, 2005). The system consists of 

ten compliant fingers, four compliant graspers, and two compliant indexers. The bird is 

supported between a pair of “compliant hands” that moves in the y direction.  

 
Fig. 2.14: Live Bird Transfer System 

 

Each hand consists of lower fingers, upper fingers and two compliant graspers, whose 

functions are stated as follows: 

 The three lower fingers support the weight of the bird while transferring. 

 The two upper fingers prevent the bird from flapping and escaping the hands. 

Both the upper and lower fingers are designed to accommodate with a limit 

range of bird sizes in the z direction. 

 Compliant graspers are designed to accommodate a limit range of bird sizes in 

the x direction. 

In addition, the two compliant indexers are used to position a shaft that rotates the 

compliant grasper in the z direction every 90 degrees. They are compact in size and can 

replace traditional actuators. As will be shown, the proposed model can greatly simplify 

the design and analysis of these compliant mechanisms. 
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2.3.9   Medical 

Physical therapy: A walker that uses NASA’s cable compliance technology enables 

patients with limited use of their legs and lower backs to be supported for walking 

therapy (Mitchell, 2003). 

 

Compliant end-effector (Frecker, and Dziedzic, 2001) and piezoelectric actuator 

(Edinger et al., 2000): They are used for Minimally Invasive Surgery (MIS). A new 

compliant suture needle grasper has been designed for use in MIS procedures. This 

design eases the sterilization over current MIS tool designs. 

 

Joint prosthesis: Prosthetic devices are typically expensive and short-lived and only 

the most expensive provide “human-like” response.  

 

The compliant joint provides resistance similar to a human limb because of its nonlinear 

nature: as the cable in the joint bends the stiffness increases whereas standard 

mechanical devices have constant stiffness (Mitchell, 2003). Fig. 2.15 presents the 

compliant technology applied to a knee joint. 

 
 

Fig. 2.15: 2-Knee-joint engineering prototype 
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2.3.10     Biomechanics 

 

Biomechanics is the area that specializes in cardiovascular, orthopaedic, rehabilitation 

engineering and simulation. There are plenty of potential devices which can be 

simplified into single piece component such as joint at knee, hip, pelvic, etc. or to make 

the components to be more compliance with the natural flow of blood such as artificial 

heart valve. 

 

2.3.11     Sports 

2.3.11.1    Pole Vault 

Compliant mechanisms find an important use in the sport of pole vaulting as shown in 

Fig.  2.16(a), which shows a sequence of movements by a world-class male pole vaulter.  

 
 

Fig.  2.16: Model of the vaulter with a flexible pole 

 

Linthorne (2000) discussed the flexible pole’s advantages in the pole vault by 

modelling the pole vaulting with flexible pole and predict the optimum take-off 

technique for a typical world-class pole vaulter. As illustrated in Fig. 2.16(b) which 
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shows the vaulter trajectory, the flexible pole acts as an energy transformer that 

transforms the kinetic energy of the vaulter into potential energy in the vaulting process. 

 

2.3.11.2     Flex-Run 

As shown in Fig. 2.17, Flex-Run was first introduced in 1984 by prosthetic user and 

research inventor Van Phillips. The advantages of Flex-Run over conventional 

prosthetic feet are its light weight and compliance. 

          
                        (a) Side View                                                       (b) Vari-Flex   

  

 
(c) Flex-Run for Athletics 

 

Fig. 2.17: Flex-Run Products 

Two critical breakthroughs made this product unique and revolutionized the everyday 

aspirations of amputees. First, energy storage and release, is a function inherent in the 

patented carbon fibre design of Flex-Run. Second, vertical shock absorption enables a 

more natural gait and protects the sound limb and remaining joints of the amputated 

limb from excessive shock. Today different functions are available within the Flex-Run 

range to suit individual needs. 
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2.3.12      Robotics 

NCF compression mechanism use compliant technology to achieve near-constant 

pressure with a deviation of only 2% in the compression forces. Several configurations 

have been designed to work over a range of travel patterns. No NCF compression 

mechanism is known on the market yet, so the opportunities are great. Uses of NCF 

compression mechanisms might include fitness products, robot end effectors, tool 

holder, motor brush holder, wear test apparatus and safety devices (Howell, 2003(c)).  

 

2.4 Syntheses of Compliant Mechanisms 

Typically, the two approaches known in the literature for the systematic syntheses of 

compliant mechanisms are the kinematics based approach (Howell and Midha, 1996) 

and the structural optimization based approach (Saxena and Ananthasuresh, 1998).  

 

2.4.1 Kinematics-based approach 

In kinematics approach, compliant segments are illustrated as several rigid links 

connected together by pin joints and torsional springs are added to resist torsion. The 

value of spring constants and where to place it in the model are calculated differently 

depending on types of segments. There are several familiar segments assigned by 

Howell and Midha (1996), i.e., small-length flexural pivots, cantilever beam with force 

at the free end (fixed pinned), fixed-guided flexible segment, initially curved cantilever 

beam and pinned-pinned segment. Different types of segments require different 

models; Howell discussed briefly how they might be applied to compliant mechanisms. 

Although this method is easier to analyse compared to its compliant counterpart, 

however, mechanism’s force-deflection relationships are still difficult to be determined. 

Typically, there are two approaches introduced to determine existing relationship from 
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pseudo rigid-body models. The first method uses conventional Newtonian methods i.e., 

each links are analysed to obtain static equilibrium. Thus, the force system for the entire 

mechanism is established. On the other hand, principle of virtual work can also be 

selected to determine force-deflection relationship. The approach views the system 

entirely and does not include all the reaction forces (Howell, 2001). Typically, 

kinematics-based approach is well suited with mechanisms that undergo large, 

nonlinear deflections. Besides, this approach requires starting with a known rigid-links 

mechanism. 

 

2.4.2 Structural Optimization Based Approach 

In this approach it is not required to begin with a known rigid link mechanism. It focuses 

on the determination of the topology, shape and size of the mechanism (Saxena and 

Ananthasuresh, 2000). A numerical approach of topology optimization starts with a 

domain of material to which the external loads and supports are applied (Sigmund, 

2000). The objective function is often the compliance, that is, the flexibility of the 

structure under the given loads, subject to a volume constraint. In general, there are two 

types of design domains i.e., ground structure (Ansola et al., 2002) and continuum 

structures (Pedersen et al., 2001). Ground structure uses an exhaustive set of truss or 

beam/frame elements in the design domain. The individual cross-section is defined as 

design variables. When the cross sectional area of an element goes to zero, that element 

will be removed. Thus after the optimization procedure converges, some elements will 

be removed from the original exhaustive set. The remaining elements will define the 

topology for the compliant mechanism (Saxena and Ananthasuresh, 2000).  
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In the continuum structures, design domain is typically divided into appropriate finite 

elements where every element has intrinsic structural properties (Funchs et al., 2000). 

In solving topology optimization problems using this kind of domain (continuum), three 

major approaches are used. One is the homogenization method, which is based on the 

assumption of microstructure in which the properties are homogenized (Allaire and 

Castro, 2002). There are three design variables associated with each finite element. Two 

of them represent the dimensions of the rectangular hole in the element and the last one 

is for the orientation of the hole. The element is considered anisotropic due to the hole. 

Another approach is the density method in which the material density of each element 

is selected as the design variables. The density method assumes the material to be 

isotropic and each design variable varies between zero and one and the intermediate 

values should be penalized to obtain a “black and white” (zero-one) design (Borrvall 

and Petersson, 2001). Several penalization techniques have been suggested. In the 

SIMP approach (Solid Isotropic Microstructure with Penalization), a powerlaw model 

is used, where intermediate densities give very little stiffness in comparison to the 

amount of material used. Another approach is to add a concave penalty function that 

suppresses intermediate values to the objective function (Stolpe and Svanberg, 2001(a), 

(b)). The third approach is the evolutionary structural optimisation (ESO). The original 

idea of this method is to gradually remove lowly stressed elements to achieve the 

optimal design (Bulman et al., 2001). 

 

2.5 Fabrication of Compliant Mechanisms 

2.5.1 Micro Fabrication 

Fabrication of microstructures can be done using silicon surface micromachining in thin 

film materials. Currently, two-dimensional (2-D) fabrication procedures are well 
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developed, but effort is devoted to the development of fabrication methods for two-and-

a-half and fully three-dimensional (3-D) micro mechanisms (Larsen et al., 1997). 

However, there are relatively few of those machines existing in the world to fabricate 

MEMS in the quantities that are needed (Sorosiak, 2001). 

 

2.5.2 Macro fabrication 

Using traditional machining methods to fabricate flexible members of compliant 

mechanisms give a lot of challenges. But, since many new methods of fabrication have 

been developed recently, such as the use of 3-axis computer numeric controlled (CNC) 

milling, laser cutting, wire electrical discharge machining (EDM), abrasive water jet 

and rapid prototyping which make it possible to develop a prototype of compliant 

mechanisms (Mortensen et al., 2000). However, in each of those methods, there is still 

limitation either from the machine itself or the material that will be used. Therefore, 

before proceeding into the drawing and machining phase, it is important to properly 

interact with the machine and material. For instance, care must be taken to ensure that 

there is enough space for the cutter to pass through the mechanisms or to design a 

mechanism with possible minimum radii and thickness that can be cut (Mortensen et 

al., 2000). 

 

2.6 Differences between Linear and Nonlinear Analysis 

The differences between linear and nonlinear analysis are vital and one will realize 

there are optimum times to use one type of analysis versus the other. The term 

“stiffness” defines the fundamental difference between linear and nonlinear analysis. 

Stiffness is a property of a part or assembly that characterizes its response to the applied 

load. A number of factors affect stiffness:  
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1. Shape: An I-beam has different stiffness from a channel beam. 

 
Fig. 2.18: An I-Beam and a Channel 

 

2. Material: An aluminium beam is less stiff than the same size steel beam. 

 
Fig. 2.19: An Aluminium Beam and a Steel Beam 

 

3. Part Support: A beam with a simple support is less stiff and will deflect 

more than the same beam with built-in supports. 

 
Fig. 2.20: A Cantilever and Two Fixed Supports 

 

When a structure deforms under a load its stiffness changes, due to one or more of the 

factors listed above. If it deforms a great deal, its shape can change. If the material 

reaches its failure limit, the material properties will change. On the other hand, if the 

change in stiffness is small enough, it makes sense to assume that neither the shape nor 

material properties change at all during the deformation process. This assumption is the 



 

Chapter 2: Literature Review 

 

35 

 

fundamental principle of linear analysis. That means that throughout the entire process 

of deformation, the analysed model retained whatever stiffness it possesses in its 

undeformed shape prior to loading. Regardless of how much the model deforms, 

whether the load gets applied in one step or gradually, and no matter how high the 

stresses that develop in response to that load may be, the model retains its initial 

stiffness. This assumption greatly simplifies problem formulation and solution. Recall 

the fundamental Finite Element Analysis (FEA) equation: 

 [𝐹] = [𝐾]{𝑢}   (2.1) 

Where, 

 [𝐹] is the known vector of nodal loads 

  [𝐾] is the known stiffness matrix 

    {𝑢} is the unknown vector of nodal displacements 

This matrix equation describes the behaviour of FEA models. It contains a very large 

number of linear algebraic equations, varying from several thousand to several million 

depending on the model size. The stiffness matrix [𝐾]depends on the geometry, material 

properties, and restraints. Under the linear analysis assumption that the model stiffness 

never changes, those equations are assembled and solved just once, with no need to 

update anything while the model is deforming. Thus linear analysis follows a straight 

path from problem formulation to completion. It produces results in a matter of seconds 

or minutes, even for very large models. Everything changes upon entering the world of 

nonlinear analysis, because nonlinear analysis requires engineers to abandon the 

assumption of constant stiffness. Instead, stiffness changes during the deformation 

process and the stiffness matrix [𝐾] must be updated as the nonlinear solver progresses 

through an iterative solution process. These iterations increase the amount of time it 

takes to obtain accurate results.  
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2.7 Understanding Different Types of Nonlinear Behaviour 

Although the process of changing stiffness is common to all types of nonlinear analyses, 

the origin of nonlinear behaviour can be different, making it logical to classify nonlinear 

analyses based on the principal origin of nonlinearity. Because it isn’t possible to point 

out a single cause of nonlinear behaviour in many problems, some analyses may have 

to account for more than one type of nonlinearity.  

 

2.7.1 Geometric Nonlinearity 

As already discussed, nonlinear analysis becomes necessary when the stiffness of the 

part changes under its operating conditions. If changes in stiffness come only from 

changes in shape, nonlinear behaviour is defined as geometric nonlinearity. Geometric 

nonlinearities refer to the nonlinearities in the structure or component due to the 

changing geometry as it deflects. Such shape-caused changes in stiffness can happen 

when a part has large deformations that are visible to the naked eye. That is, the stiffness 

[𝐾] is a function of the displacements {𝑢}. The stiffness changes because 

the shape changes and/or the material rotates. The program can account for five types of 

geometric nonlinearities: 

1. Large strain assumes that the strains are no longer infinitesimal (they are 

finite). Shape changes (e.g., area, thickness, etc.) are also taken into account. 

Deflections and rotations may be arbitrarily large. 

2. Large displacement and rotation assumes that the displacement and rotations 

are large but the mechanical strains (those that cause stresses) are small and are 

evaluated using linearized expressions. The structure is assumed not to change 

shape except for rigid body motions. The elements of this class refer to the 

original configuration. 
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3. Stress stiffening assumes that both strains and rotations are small. 

A first order approximation to the rotations is used to capture some nonlinear 

rotation effects. 

4. Spin softening also assumes that both strains and rotations are small. This option 

accounts for the radial motion of a body's structural mass as it is subjected to an 

angular velocity. Hence it is a type of large deflection but small rotation 

approximation. 

5. Pressure load stiffness accounts for the change of stiffness caused by the 

follower load effect of a rotating pressure load. In a large deflection run, this 

can affect the convergence rate. 

 

A generally accepted rule of thumb suggests conducting a nonlinear geometry analysis 

if the deformations are larger than 1/20th of the part’s largest dimension. Another 

important factor to recognize is that in cases of large deformations, the load direction 

can change as the model deforms. Most FEA programs offer two choices to account for 

this direction change: following and non-following load. A following load retains its 

direction in relation to the deformed model. A non-following load retains its initial 

direction. 

 

A pressure vessel subjected to very high pressure that undergoes a drastic change of 

shape provides another good example of the latter situation. The pressure load always 

acts normal to the walls of the pressure vessel. While linear analysis of this scenario 

assumes that the shape of the vessel does not change, realistic analysis of the pressure 

vessel requires analysing geometric nonlinearity with nonconservative loading (Fig. 

2.21). Changes in stiffness due to shape can also occur when the deformations are small. 
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A typical example is an initially flat membrane deflecting under pressure. Initially, the 

membrane resists the pressure load only with bending stiffness. After the pressure load 

has caused some curvature, the deformed membrane exhibits stiffness additional to the 

original bending stiffness.  

 
Fig. 2.21: Following (or nonconservative) load changes its directionduring the 

process of deformation and remains normal to the deformed beam (left). 

Nonfollowing, or conservative, load retains its original direction (right). 

 

Deformation changes the membrane stiffness so that the deformed membrane is much 

stiffer than the flat membrane. Some FEA programs use confusing terminology, calling 

all analysis of geometric nonlinearities “large deformation analysis.” This ignores the 

necessity to perform nonlinear analysis for smaller deformation. 

  

2.7.2 Material Nonlinearity 

If changes of stiffness occur due to changes in material properties under operating 

conditions, the problem is one of material nonlinearity. A linear material model 

assumes stress to be proportional to strain. That means it assumes that the higher the 

load applied, the higher the stresses and deformation will be, proportional to the 

changes in the load. It also assumes that no permanent deformations will result, and that 

once the load has been removed the model will always return to its original shape. 

Although this simplification is acceptable, if the loads are high enough to cause some 
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permanent deformations, as is the case with most plastics, or if the strains are very high 

(sometimes > 50 percent), as occurs with rubbers and elastomers, then a nonlinear 

material model must be used. Due to the vast differences in how various types of 

materials behave under their operating conditions, FEA programs have developed 

specialized techniques and material models to simulate these behaviours. Table 2.1 

offers a short review of what material models work best for which problem. 

 

Table 2.1: Classification of Nonlinear Material Models 

 

Material 

Classification 

 

Model 

 

Comment 

Elastoplastic Von Mises or Tresca These models work well for material 

for which a strain-stress curve shows 

a ‘plateau’ before reaching the 

ultimate stress. Most engineering 

metals and some plastics are well-

characterized by this material model 

Drucker-Prage This model works for soils and 

granular materials. 

Hyperelastic Mooney-Rivlin, Ogden and 

Neo Hookean  

Work well for incompressible 

elastomers such as rubber 

Blatz-Ko This model works for compressible 

polyure- than foam rubbers. 

Viscoelastic Several (optional with other 

models) 

This model works for hard rubber or 

glass. 

Creep Several (optional with other 

models) 

Creep is a time-dependent strain 

produced under a state of constant 

stress. Creep is observed in most 

engineering materials, especially 

metals at elevated temperatures, high 
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polymer plastics, concrete, and solid 

propellant in rocket motors 

Superelastic  

(Shape 

memory 

alloys) 

Nitinol Shape-memory-alloys (SMA) such 

as Nitinol present the superelastic 

effect. This material undergoes large 

deformations in loading-unloading 

cycles without showing permanent 

deformations 

  

2.8 Impact of Nonlinear Analysis on Designed Products 

The nature of frequently encountered analysis problems should be the yardstick by 

which to justify a decision to add nonlinear analysis capabilities to the engineer’s 

analysis. If day-to-day work requires nonlinear analysis only occasionally, it may be 

better to ask for the help of a dedicated analyst or to hire a consultant. If, because of the 

nature of the designed products, design analysis problems routinely involve large 

deformations, membrane effects, nonlinear material, contact stresses, buckling, or 

nonlinear supports, then nonlinear analysis capabilities should be added to the analysis 

(SolidWorks, 2008). 

 

Nature is nonlinear (Sugihara, 2010). That means linear analysis can only approximate 

the real nonlinear behaviour of parts and assemblies. Most of the time, such an 

approximation is acceptable, and linear analysis can provide valuable insight into 

product characteristics. In many cases, however, linear assumptions differ too much 

from reality and provide crude or misleading information (Trehan, 2011). Using the 

results of linear analysis to decide if a part will fail under its operating loads may lead 

to overdesign. For example, a bracket design analysed only with linear analysis requires 

the designer to stick with a requirement that stress must not exceed the yield. But 
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nonlinear analysis may show that some level of yielding is acceptable. In that event, it 

becomes possible to save on the amount of material used or to choose a less expensive 

material without compromising structural integrity. An engineer may be concerned 

about too large deflection of a flat panel tested with linear analysis. The panel might be 

overdesigned to compensate for that deflection without ever knowing that linear 

analysis exaggerated the deformations. Once an engineer gains enough experience to 

recognize nonlinear problems, it becomes obvious that application of this technology 

is not confined to exotic situations. Designs that require or may benefit from nonlinear 

analysis abound in every industry and in everyday design practice. To this end, 

compliant mechanisms fall into the category of engineering structures that exhibit 

nonlinear characteristics. 

 

2.9   Nonlinear Analysis in Everyday Design Practice  

Once an engineer gains enough experience to recognize nonlinear problems, it becomes 

obvious that application of this technology is not confined to exotic situations. Designs 

that require or may benefit from nonlinear analysis abound in every industry and in 

everyday design practice. Below are several examples of products where the correct 

design decision requires nonlinear analysis. Many of these problems involve more than 

one type of nonlinear behaviour. 

 

2.9.1 Idler Pulley 

This stamped steel pulley may buckle under belt load before it develops excessive 

stresses. Although a linear buckling analysis may be enough to determine the buckling 

load, nonlinear analysis is required to study its post buckling behaviour. 



 

Chapter 2: Literature Review 

 

42 

 

 
 

Fig. 2.22: Idler Pulley 

 

2.9.2 Rollover Protective Structure 

In the case of a rollover, the structure deforms past its yield, and absorbs rollover 

energy. During this process it experiences large deformation Understanding the effects 

of rollover requires combining nonlinear material and nonlinear geometry analysis. 

 
 

Fig. 2.23: Rollover Protective Structure 

 

 

2.9.3 Soft Obstetric Forceps 

Soft obstetric forceps are designed to “mould” around a baby’s head during forceps-

assisted delivery. If too high traction and/or compression are applied, the forceps are 

designed to slip off the baby’s head to prevent injuries. Analysis of such forceps must 

combine nonlinear material and nonlinear geometry to account for large deformations 

and nonlinear elastic material. 
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Fig. 2.24: Soft Obstetric Forceps 

 

2.9.4 Fan Guard 

This part requires nonlinear geometry analysis because of the membrane stresses that 

develop during the deformation process. A nonlinear material analysis may be required 

as well. 

 
Fig. 2.25: Fan Guard 

 

2.9.5 Diaphragm Spring  

The nonlinear spring characteristic requires a nonlinear geometry analysis to account 

for membrane effects. 

 
Fig. 2.26: Diaphragm Spring 
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2.9.6 Airline Luggage Container 

This airline luggage container requires a nonlinear geometry analysis because of 

membrane effects in the blue Lexan® panels. In addition, the frame requires a buckling 

or post buckling analysis. 

 
 

Fig. 2.27: Airline Luggage Container 

 

2.9.7 Snap Ring 

A nonlinear geometry analysis is required because of large deformations. This ring may 

also be a candidate for a nonlinear material analysis. 

 
Fig. 2.28: Snap Ring 

 

2.9.8 Allen Wrench  

The contact between the wrench and the socket screw necessitates a contact stress 

analysis. 
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Fig. 2.29: Allen Wrench 

 

2.9.9 Office Chair 

In this example, large deformations of the frame may necessitate a nonlinear geometry 

analysis. The seat and backrest require nonlinear geometry and nonlinear material 

analysis. 

 

Fig. 2.30: Office Chair 

The nature of frequently encountered analysis problems should be the yardstick by 

which to justify a decision to add nonlinear analysis by the engineers. If day-to-day 

work requires nonlinear analysis only occasionally, it may be better to ask for the help 

of a dedicated analyst or to hire a consultant. If, because of the nature of the designed 

products, design analysis problems routinely involve large deformations, membrane 

effects, nonlinear material, contact stresses, buckling, or nonlinear supports, then 

nonlinear analysis should be added by the design engineers.  
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The past two decades have conditioned engineers to the use of FEA as a design tool. 

Now FEA software and computer hardware have matured enough so that nonlinear 

analysis can be added to their toolboxes. 

 

2.10 Nonlinear Dynamic Analysis 

Dynamic analysis accounts for inertial effects, damping, and time-dependent loads. A 

drop test, vibrations of an engine mount, airbag deployment, or crash simulation all 

require dynamic analysis. But is dynamic analysis linear or nonlinear? The qualifying 

rules are exactly the same as in static analysis. If model stiffness does not change 

significantly under the applied load, then linear dynamic analysis suffices. A vibrating 

engine mount or a tuning fork both experience small deformations about the point of 

equilibrium and so can be analysed with linear dynamic analysis. Problems such as 

crash simulation, analysis of airbag deployment, modelling a metal stamping process, 

or modelling of polymeric materials in structural design, all require nonlinear dynamic 

analysis because both large deformations and large strains occur. 

 

2.11 Simulation Approach 

2.11.1  Traditional FEM applications 

During the last decades, important improvements have been achieved by using standard 

features of the currently available finite element (FE) package like Abaqus, Feap, etc. 

Numerical simulations are well established in several engineering fields, and all of them 

use several Mathematical models described by a system of differential equations. Most 

of existing numerical methods for solving partial differential equations could be divided 

into two main groups: Finite Difference Method (FDM) and Finite Element Method 

(FEM). Unfortunately, the definition of a new finite element method would be time 
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consuming, since a lot of time is spent to derive characteristic quantities like gradients, 

Jacobean, Hessian, etc. The use of commercial FEM environment represents a common 

practice to analyse a great variety of physical problems; however, the use of such large 

systems is not very awkward for developing and testing new numerical procedures. In 

fact, during the initial research phases, it’s more efficient the use of the symbolic – 

numerical environments like Mathematica or Maple. Moreover, the identification of 

many design flow (such as poor convergence proprieties) could be easier through the 

use of symbolic environments. Despite these advantages, the symbolic level of analysis 

becomes very inefficiently if iterative procedures have to be performed, or if a large 

number of elements have to be considered. In order to assess element performances 

under real conditions the best way is to perform tests on sequential machines with good 

debugging procedures (programs written in FORTRAN or C/C++). By the classical 

approach, re-coding of the element in different languages would be extremely time 

consuming and for this reason it is never done. 

 

2.11.2 Hybrid Symbolic-Numeric Computational Systems 

The advances in reliability, generality and interdisciplinary nature of the new 

computational methods derived in recent years are primary result of a holistic approach 

to computational modelling. The use of advanced software technologies is playing a 

central role in the process that leads to the ultimate goal, i.e. a complete automation of 

computational modelling (Korelc, 2010). The problem of automation of computational 

methods has been explored by researches from the fields of mathematics, computer 

science and computational mechanics, resulting in a variety of approaches (e.g. a hybrid 

object-oriented approach (Eyheramendy and Zimmermann, 1999) and a hybrid 

symbolic-numeric approach (Korelc, 2002)) and available software tools (e.g. computer 
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algebra systems, automatic differentiation tools (Griewank, 2000), problem solving 

environments and numerical libraries). Automation can address all steps of the finite 

element solution procedure from the strong form of boundary-value problem to the 

presentation of results (Logg, 2007), but more often it is used only for the automation 

of the selected steps of the whole procedure. The paper presents a hybrid symbolic-

numeric approach to automation of primal as well as sensitivity analysis (Korelc, 2009). 

The hybrid symbolic-numeric approach employs general-purpose automatic code 

generator (Korelc, 2012) to derive and code characteristic finite element quantities (e.g. 

residual vector and stiffness matrix) at the level of individual finite element and a 

general-purpose finite element environment to solve the global problem.  

 

2.11.3 Automatic Code Generation 

The automatic code generation approach presented combines a symbolic system 

Mathematica, an automatic differentiation technique with the simultaneous expression 

optimization and an automatic generation of program code in a selected compiled 

language. The automation of the finite element methods should not be restricted only 

to the repetition of the same procedures that are normally done manually on a sheet of 

paper. The true advantages of automation become apparent only if the description of 

the problem, the notation and the Mathematical apparatus used are changed as well. It 

is demonstrated in the paper that this can be achieved using the automatic differentiation 

technique.  

 

The automatic differentiation technique is based on the fact that every computer 

program executes a sequence of elementary operations with known derivatives, thus 

allowing the evaluation of exact derivatives via the chain rule for an arbitrary complex 
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formulation (Griewank, 2000). Therefore, the automatic differentiation is a method to 

evaluate the derivative of a function specified by a computer program and represents 

an alternative to the classical manual derivation of derivatives. Recent advances in 

development of automatic differentiation technique, especially the backward mode 

implementation of the code-to-code approach to automatic differentiation, have 

rejected the traditional assumption that automatic differentiation is impracticable and 

that the automatic differentiation based numerical codes are intrinsically too slow for 

large-scale numerical computations. However, as powerful as automatic differentiation 

technique is, the results of the automatic differentiation procedure might not 

automatically correspond to the specific Mathematical formalism used to describe the 

mechanical problem. The essential feature of the proposed approach is that it extends 

the classical formulation of automatic differentiation technique by additional operators 

defining exceptions in automatic differentiation procedure. Based on these operators a 

new notation is introduced, representing a bridge between the classical Mathematical 

notation of computational models and the actual algorithmic implementation of finite 

elements. Thus, the basis for the proposed automation of computational modelling is 

an automatic differentiation based form of basic equations used to describe the problem. 

The introduced notation does not only simplify the derivation of the corresponding 

equations, but also reflects much more closely the actual algorithmic implementation. 

In this way, the Mathematical formulation and computer implementation become 

indistinguishable.  

 

The automatically generated code is numerically efficient if the number of functions to 

differentiate and the number of calls to automatic differentiation procedure are kept to 

a minimum. One of the consequences of this rule is that, in general, formulations where 
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the element residual vector is derived as a gradient of scalar function, e.g. variational 

potential, lead to a more efficient numerical code than those based on weak form of the 

equilibrium equations where the variation of the kinematic quantities, e.g. strain tensor 

or tangential gap vector, requires differentiation of several scalar functions. Thus, the 

possibility of transforming the weak form into the “pseudo-potential” scalar function is 

worth exploring. The pseudo-potential has to be formed in a way that automatic 

differentiation of the pseudo-potential accompanied with the proper automatic 

differentiation exceptions leads to the correct equations of the problem. 

 

2.11.4     AceGEN and AceFEM Overview 

The AceFEM and AceGEN packages has been written and developed by Jože Korelc, 

professor at the University of Ljubljana’s Faculty of Civil and Geodetic engineering. 

Each package combines use of Mathematica’s facilities with external handling of 

intensive computation by compiled modules. The task of the Mathematica package 

AceGEN is the automatic and optimized derivation of formulae needed during 

numerical procedures. The great advantage of this tool, stands on his new and 

innovative approach which exploits all the symbolic and algebraic capabilities of 

Mathematica, avoiding all the typical troubles of such symbolic software during the 

analysis of complex mechanical models.  

 

By using an innovative Symbolic-Numerical approach, AceGEN is able to combine 

different techniques, explained in the following chapters, in order to shorten the 

evolution route of any computing procedures. Besides the results could be exported as 

compiled FORTRAN or C code with automated interfacing, exploiting all the 

capabilities of such languages. AceGEN is set up to talk with other numerical 
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environments, including its sibling AceFEM. AceFEM is an innovative finite element 

environment designed to solve multi-physics and multi-field problems. The AceFEM 

package explores advantages of symbolic capabilities of Mathematica while 

maintaining numerical efficiency of commercial finite element environments.  

 

AceFEM application could employ specific own elements or general codes previously 

created by AceGEN. The AceFEM package contains a large library of finite elements 

(solid, thermal, contact... 2D, 3D...) including full symbolic input for most of the 

elements. Additional elements can be accessed through the AceShare finite element file 

sharing system. The AceFEM package exploit an element oriented approach which 

enables easy creation of customized finite element based applications in Mathematica.  

The combination of the automatic code generation package AceGEN and the AceFEM 

package represent an ideal tool for a rapid development of new numerical models. 

 

2.12  Review of Prior and Related Works on Compliant Mechanisms  

This subsection comprises of three parts; the works that looked at geometric or both 

geometric and material nonlinearities; the works that formulated dynamic equation for 

dynamic performance of compliant mechanisms. Finally, the review of works on 

fatigue life prediction of compliant mechanisms was carried out. 

 

2.12.1  Nonlinearity in the Design and Analysis of Compliant Mechanisms 

Comparing with vast technical publications on design and analysis of compliant 

mechanisms with both linear geometry and material assumptions, very limited works 

can be cited on nonlinear geometry. Yixian and Liping (2008) presented a topology 

optimization approach using element-free Galerkin method (EFGM) for the optimal 
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design of compliant mechanisms with geometrically nonlinearity. EFGM was 

employed to discretize the governing equations and the bulk density field. Jutte (2008) 

presented a generalized nonlinear spring synthesis methodology for prescribed load-

displacement functions. Four spring examples, J-curve, S-curve, constant-force, and 

linear,  were used to demonstrate the effectiveness of the methodology in generating 

planar spring designs having distributed compliance and matching desired load-

displacement functions.   Jinqing and Xianmin (2011) presented a new methodology 

for geometrical nonlinear topology optimization of compliant mechanisms under 

displacement loading. Xian et al. (2009) integrated the element-free Galerkin (EFG) 

method, one of the important meshless methods, into topology optimization and a new 

topology optimization method for designing thermomechanical actuated compliant 

mechanisms with geometrical nonlinearities.  

 

Aten et al. (2012) presented a performance-based comparison of quadratic shell 

elements with shear deformation and 3-D quadratic solid elements for modelling 

geometrically non-linear coupled in-plane and out- of-plane deflection of thin-film 

compliant microelectromechanical systems. Joo et al.  (2001) presented a non-linear 

formulation for size and shape optimization of compliant mechanisms using tapered 

beam elements. They also investigated the scaling effect of the compliant mechanism. 

Borhan et al. (2006) developed a complete nonlinear finite element model for coupled-

domain MEMS devices with electrostatic actuation and squeeze film effect. They 

employed a corotational finite element formulation for the dynamic analysis of planer 

Euler beams. Dinesh and Ananthasuresh (2007) presented a systematically obtained 

novel design of a compliant X-Y micro-stage with a large range of motion. They 

employed geometrically nonlinear finite element analysis to model the behaviour of the 
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compliant mechanism using a ground structure of frame elements. Cullinan et al. (2007) 

presented observations of the large displacement behaviour of a clamped-clamped 

carbon nanotube (CNT) flexure element and provided an overview of a new Pseudo 

Rigid Body (PRB) model that predicts its elastomechanic behaviour. Jorge (2010) 

addressed the force-displacement model of flexure-based planar compliant mechanisms 

considering large deflections under quasi-static conditions. A force-displacement 

model procedure consisting of three iterative steps, kinematic – force – large deflection 

analysis was developed. Attempts at geometric nonlinearity analysis have always 

neglected the influence of shear deformation. An investigation on the geometric 

nonlinearity analysis of compliant mechanisms where all flexible links are considered 

as two dimensional beams with shear deformation is presented. The energy equations 

were developed first; the discretization and the Lagrangian dynamics that produced the 

motion equation were thereafter established. 

 

However, a few works took cognizance of material nonlinearity in the topology 

synthesis of compliant mechanisms. Swan and Rahmatalla (2004) proposed a 

methodology for continuum topology design of compliant mechanisms using finite 

elastic deformation within a continuum structural topology optimization framework. 

Rahmatalla and Swan (2005) designed formulation for design of continuous, hinge-free 

compliant mechanisms. It is developed and examined within a continuum structural 

topology optimization framework. The proposed formulation involves solving two 

nested optimization problems. Bruns and Tortorelli (2001) considered geometric 

nonlinearity to propose a well-posed topology optimization formulation that leads to 

convergent mesh-independent results. They accounted for large deformation of 

compliant mechanism by using nonlinear elastic analysis in the topology optimization. 
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Jung and Gea (2002; 2004) studied the topology optimization of both geometrically and 

materially nonlinear structure using a general displacement functional as the objective 

function. In order to consider large deformation, effective stress and strain are 

expressed in terms of 2nd Piolar–Kirchhoff stress tensor and Green–Lagrange strain 

tensor, and constitutive equation is derived from the relation between the effective 

stress and strain. Compliant mechanisms examples were used to validate the study. 

Material nonlinearity in these works were only introduced in the synthesis and topology 

optimizations of compliant mechanisms. No researcher has bordered to look at 

appropriate model to describe the large deformation behaviour of compliant 

mechanisms. 

 

2.12.2 Dynamic Analysis of Compliant Mechanisms 

Dynamic analyses of compliant mechanisms have been a subject of interest for 

simulation and control of flexible mechanical systems. Examples include space robot 

arms and high-speed robotic manipulators. Most of dynamic models are often based on 

the assumption of small deflection without considering geometric and material 

nonlinearities. This assumption is satisfactory provided that the link undergoes a small 

deflection such that the theory of linear elasticity holds. However, for mechanisms 

involving highly compliant links such as rubber fingers in (Lee, 1999), live bird 

transferring system (Chao-Chieh, 2005), light-weight arms, and high-precision 

elements, the effects of large deformation with geometric and material nonlinearities 

cannot be ignored.  There are two main approaches used in literature in the dynamic 

analysis of compliant mechanisms – the pseudo rigid body model and the finite element 

method. 
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2.12.2.1    Pseudo Rigid Body Model  

A number of works have been done on the dynamic analysis of compliant mechanisms 

using the Pseudo Rigid Body Model (PRBM). Ugwuoke (2008) presented simplified 

dynamic model and stability analysis for the constant-force compression spring (CFCS) 

based on the PRBM. Ugwuoke et al. (2009a) presented the frequency and modal 

analysis of constant-force mechanism based on the Pseudo Rigid Body Model. 

Ugwuoke (2009b) considered three useful plots in the evaluation of each of the dynamic 

models for their stability characteristics, which includes the polar plot based on the 

Routh-Hurwitz stability criterion, the Bode plot, and the Nyquist diagram which 

considers stability in the real frequency domain. Ugwuoke (2009c) presented the 

dynamic analysis of the compliant constant force mechanism using the PRBM. Yu et 

al. (2005) discussed the dynamic modelling of compliant mechanism based on Pseudo 

Rigid Body Model.  

 

Lyon et al. (1997; 1999), discussed the dynamic response and prediction of the first 

natural frequency of a Compliant Mechanism using the Pseudo Rigid Body Model. 

Kimball and Tsai (2002) analysed the dynamic behaviour of the flexural beams in 

compliant mechanisms by means of PRBM. Boyle et al. (2003) presented the analytical 

and experimental study on the dynamic response of compliant constant - force 

compression mechanisms. Rezaei et al. (2006) explored a dynamic behaviour analysis 

of a compliant four-bar micromechanism. The Pseudo-Rigid-Body Model (PRBM) is 

used to model the compliant mechanism, and to analyse the large deflection of flexible 

segment. The model and Lagrange Equations are used to develop the dynamic 

equations. 
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2.12.2.2     Finite Element Method 

Some other researchers have adopted the concept of finite element method in the 

dynamic analyses of compliant mechanisms. Li and Kota (2002) showed the dynamic 

performance of a compliant stroke multiplier. Their work covers the basic elements of 

dynamic analysis such as natural frequencies, natural modes, dynamic response, 

frequency spectrum analysis, and sensitivity analysis. Wang and Yu (2008; 2010) 

developed the dynamic equation of compliant mechanism based on the finite element 

method by using Lagrange equation. On this basis, they derived the natural frequencies 

and modes of the mechanism. A method for calculating the sensitivity of natural 

frequencies and modes to the design variables were also presented. Zhang and Hou 

(2010) developed the generalized Equations of motion based on the finite element 

method of the compliant mechanism considering the thermal effect. The right-circular 

flexure hinge was treated as a three nodes element, in which there are three degrees of 

freedom at each node. The closed-form solutions of the element stiffness and mass 

matrices for the flexure hinge were obtained. The model was validated with 

experimental studies. All the aforementioned dynamic analysis are based on linear 

assumptions. 

 

The literature has revealed that adequate attention has not been paid to the combined 

effect of geometric and material nonlinearities in the determination of the deformation 

behaviour of compliant mechanisms. 

 

2.13 Fatigue Failure of Compliant Mechanisms 

Fatigue is one of the major failure mechanisms in engineering structures (Schutz, 1996).  

Time varying cyclic loads result in failure of components at stress values below the 
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yield or ultimate strength of the material. Fatigue failure of components takes place by 

the initiation and propagation of a crack until it becomes unstable and then propagates 

to sudden failure. The total fatigue life is the sum of crack initiation life and crack 

propagation life. Fatigue life prediction has become important because of complex 

nature of fatigue as it is influenced by several factors, statistical nature of fatigue 

phenomena and time consuming fatigue tests.  

 

Though a lot of fatigue models have been developed and used to solve fatigue problems, 

the range of validity of these models is not well defined. No method would predict the 

fatigue life with the damage value by separating crack initiation and propagation 

phases. The methods used to predict crack initiation life are mainly empirical (Wang et 

al., 1999) and they fail to define the damage caused to the material. Stress or strain 

based approaches followed do not specify the damage caused to the material, as they 

are mainly curve fitting methods. The limitation of this approach motivated the 

development of micromechanics models termed as local approaches based on 

Continuum Damage Mechanics (CDM). The local approaches are based on application 

of micromechanics models of fracture in which stress/strain and damage at the crack 

tip are related to the critical conditions required for fracture. These models are 

calibrated through material specific parameters. Once these parameters are derived for 

particular material, they can be assumed to be independent of geometry and loading 

mode and may be used to the assessment of a component fabricated from the same 

material. For some compliant structures, the desired motion may occur infrequently and 

the static theories may be enough for the analysis (Howell, 2001). However, by the 

definition of compliant mechanisms, deflection of flexible members is required for the 

motion. Usually, it is desired that the mechanism be capable of undergoing the motion 
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many times, and design requirements may be many millions of cycle of infinite life. 

This repeated loading cause fluctuating stresses in the members and can result in fatigue 

failure. Failure can occur at stresses that are significantly lower than those that cause 

static failure (Howell, 2001). A small crack is enough to initiate the fatigue failure. The 

crack progresses rapidly since the stress concentration effect becomes greater around 

it. If the stressed area decreases in size, the stress increases in magnitude and if the 

remaining area is small, the member can fail. A member failed because of fatigue shows 

two distinct regions. The first one is due to the progressive development of the crack, 

while the other one is due to the sudden fracture. Premature or unexpected failure of a 

device can result in unsafe design. The consumer confidence may be reduced in 

products that fail prematurely. For these and other reasons, it is critical that the fatigue 

life of compliant mechanism be analysed. Although fatigue failure is difficult to predict 

accurately, an understanding of fatigue failure prediction and prevention is very helpful 

in the design of compliant mechanisms. The theory can be used to design devices that 

will withstand these fluctuating stresses. 

 

Several models are available for fatigue failure prediction. The stress-life and strain-

life models are commonly used in the design of mechanical components (Howell, 

2001). These theories are appropriate for parts that undergo consistent and predictable 

fluctuating stresses. Many machine components fit into this category because their 

motion and loads are defined by kinematics of the mechanism. There are three stress 

cycles with which loads may be applied to the component under consideration. The 

simplest being the reversed stress cycle (Fig. 2.31(a)). This is merely a sine wave where 

the maximum stress and minimum stress differ by a negative sign. An example of this 
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type of stress cycle would be in an axle, in which every half turn or half period as in the 

case of the sine wave, the stress on a point would be reversed.  

    
 

 
 

Fig. 2.31: Stress cycles showing (a) Reversed, (b) Repeated and (c) Random 

cycles 

 

The most common type of cycle found in engineering applications is where the 

maximum stress and minimum stress are asymmetric (the curve is a sine wave) not 

equal and opposite (Fig. 2.31(b)). This type of stress cycle is called repeated stress 

cycle. A final type of cycle mode is where stress and frequency vary randomly (Fig. 

2.31(c)). An example of this would be hull shocks, where the frequency magnitude of 

the waves will produce varying minimum and maximum stresses. Predicting the life of 

parts stressed above the endurance limit is at best a rough procedure. For the large 

percentage of mechanical and structural compliant systems subjected to randomly 

varying stress cycle intensity (for example, compliant automotive suspension and 

compliant aircraft structural components etc.), the prediction of fatigue life is further 

complicated. The normal stress-life and strain-life models cannot be adopted in the 
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fatigue prediction. Models such as continuum damage mechanics can be used in dealing 

with this situation. 

 

The fatigue failure of thermoplastics polymers generally develops in two phases (Li et 

al., 1995).  First, the material accumulates fatigue damage (i.e. in the initiation phase), 

which ultimately leads to the formation of visible crazes. The crazes further grow, form 

cracks and propagate (i.e. in the propagation phase) until final failure occurs. In general, 

the damage process in polymers is regarded as the formation and development of micro 

defects and crazes within an initially perfect material. The material remains the same 

but its macroscopic properties change with its microscopic geometry (Tang et al., 

1996). In polymers, craze formation is generally believed to be one of the main causes 

of material damage, which is both a localized yielding process and the first stage of 

fracture. Crazes are usually initiated either at surface flaws and scratches or at internal 

voids and inclusions, and affect significantly the subsequent deformation and bulk 

mechanical behaviours of polymers (Passaglia, 1987). The Continuum Damage 

Mechanics first introduced by Kachanov and developed within the framework of 

thermodynamics discusses systematically the effects of micro-defects on the 

subsequent development of micro-defects, and the states of stress and strain in 

materials. It has been applied to fatigue and fracture of different materials.  

 

An isotropic damage evolution equation for finite viscoelasticity characteristic of 

polymeric CMs is proposed, which is based on the Continuum Damage Mechanics 

(CDM). A new damage model is developed to establish the fatigue life formula for such 

compliant systems. The compliant material is idealized as a continuous isotropic 

hyperelastic material. Commonly used polymeric material, Low Density Polypropylene 
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(LDPP) and Low Density Polyethylene (LDPE) were tested to obtain the fatigue life as 

a function of the strain amplitude. 

 

2.13.1 Previous Works on Fatigue Failure of Compliant Mechanisms  

A few researchers have looked into the fatigue failure of compliant systems. Li et al. 

(2011) used the modified Basquin equation to determine the life cycle till failure for 

compliant fast tool servo. The fatigue life according to the equation is a function of the 

equivalent reverse stress, fatigue stress concentration factor, the range stress, the 

ultimate strength, the average stress, and the endurance limit. Demirel et al. (2010) and 

Subaşi (2005) used the factor of safety expressed in terms of the fluctuating stresses, 

endurance limit, mean stress component and an alternating stress component for fatigue 

failure prediction of compliant mechanism. If the stress condition is below the two lines 

described in modified Goodman diagram for fatigue failure, the compliant member is 

expected to have an infinite life. Howell et al. (1994) proposed a method for the 

probabilistic design of a bistable compliant slider-crank mechanism which its objective 

function is the maximization of the mechanism reliability in fatigue. Cannon et al. 

(2005) used the modified fatigue strength at cycles which is expressed in terms of Marin 

correction factors and the theoretical fatigue strength to predict the failure behaviour of 

a compliant end-effector for microsribing. This gives the S-N diagram for the 

mechanism where the maximum stress is compared with the modified fatigue strength.  

 

2.13.2  Previous Works on Fatigue Failure by Continuum Damage 

Mechanics 

 

Quite a number of researchers have employed the concept of damage evolution in the 

prediction of fatigue failure of engineering structures and components. Jiang, (1995) 
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derived a damaged evolution model for strain fatigue of ductile metals based on 

Lemaitre's potential of dissipation. Then the equation of fatigue-life prediction and the 

criterion of cumulative fatigue damage were deduced. The model was validated with 

experiment. Shi et al. (2011) proposed a new damage mechanics model to predict the 

fatigue life of fibre reinforced polymer lamina and adopted the singularity of stiffness 

matrix as the failure criterion of lamina in this article, which inventively transformed 

the complex anisotropic issue of composite lamina fatigue into the analysis of single-

variable isotropic damages for fibre and matrix. Akshantala and Talreja (2000) 

proposed a methodology for fatigue life prediction that utilizes a micromechanics based 

evaluation of damage evolution in conjunction with a semi-empirical fatigue failure 

criterion. The specific case treated was that of cross ply laminates under cyclic tension. 

The predicted results were compared with experimental data for several glass, epoxy 

and carbon epoxy laminates. Ping et al. (2003) proposed a nonlinear Continuum 

Damage Mechanics model to assess the creep–fatigue life of a steam turbine rotor, in 

which the effects of complex multiaxial stress and the coupling of fatigue and creep are 

taken into account. The results were compared with those from the linear accumulation 

theory that had been dominant in life assessment of steam turbine rotors. The 

comparison shows that the nonlinear continuum damage mechanics model describes 

the accumulation and development of damage better than the linear accumulation 

theory. Ali et al. (2010) investigated the fatigue behaviour of rubber using dumb-bell 

test specimens under uniaxial loading. In modelling fatigue damage behaviour, a 

continuum damage model was presented based on the function of the strain range under 

cyclic loading.  Upadhyaya and Sridhara (2012) predicted strain controlled fatigue life 

of EN 19 steel and 6082- T6 aluminium alloy considering both crack initiation and 

crack propagation phases. The theory of Continuum Damage Mechanics was used in 
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the study of fatigue damage phenomena such as the nucleation and initial defect growth 

(microvoids and micocracks) in elastomers by Wang et al. (2002) and Mahmoud et al. 

(2007).   

 

2.14 Previous Works that adopted Symbolic Computation 

Computer algebra systems like MACSYMA, REDUCE, Maple, Mathematica, and to a 

certain extent other types of systems as Matlab and Mathcad, give possibility to carry 

out not only numerical but also symbolical computations. Symbolic computations have 

found broad applications in many areas of science and engineering. It has led to new 

approaches for problems solving and provide tools that enable an automatic and 

computerized solution of problems in ways that are not possible with conventional 

computing systems.  The symbolic-numeric approach to FEM was extensively studied 

in the last few years. Various studies of symbolic computation in structural mechanics 

and mathematics have been done. Mattern and Schweizerhof, (2010) used the symbolic 

programming tool AceGEN, a plug-in for the computer algebra software Mathematica 

to implement a formulated “Solid-shell”- element. The formulation of the element was 

done with linear and quadratic interpolation of the in-plane geometry and displacement 

in the thickness as well as in shell surface direction, with “assumed natural strain” and 

“enhanced assumed strain” in order to reduce artificial stiffness effect on the element. 

They showed some numerical examples to prove the superiority of AceGEN generated 

element routines over the manually performed implementation and concluded that 

symbolic computation is clearly advantageous in many applications in structural 

mechanics. Pomeranz (2000) described how the computer algebra system, 

Mathematica, can be used to introduce students to the finite element method. Typical 

students are juniors, seniors, and beginning graduate students in mathematics, computer 
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science, and various engineering disciplines. Students were given template code. They 

were instructed to modify the code in order to solve two-dimensional elliptic boundary-

value problems and to verify the correctness of their numerical solutions. Paláncz and 

Popper (2000) applied Symbolic computation to Runge-Kutta technique in order to 

solve a two-point boundary value problem. Their procedure was illustrated by solving 

the boundary value problem of the mechanical analysis of a liquid storage tank. 

Computations were carried out by the Mathematica symbolic system. Huet (2003) 

presented two design issues concerning fundamental representation structures for 

symbolic and logic computations. The first one concerns structured editing, or more 

generally the possibly destructive update of tree-like data-structures of inductive types. 

Instead of the standard implementation of mutable data structures containing 

references. The second method is a uniform sharing function, which is a variation on 

the traditional technique of hashing. They advocate the zipper technology, fully 

applicative. Alur et al. (2005) formulated and compared various symbolic 

computational techniques for deciding the existence of winning strategies. The game 

structure is given implicitly, and the winning condition is either a reachability game of 

the form “p until q” (for state predicates p and q) or a safety game of the 

form “Always p”. Korelc and kristanič (2005) presented design sensitivity analysis and 

optimization based on symbolic-numeric approach to evaluation of design velocity field 

by direct differentiation of symbolically parameterized mesh.  Korelc (2004) developed 

a hybrid system in which Mathematica was used for the automatic derivation of material 

model and the generation of symbolic nonlinear finite element codes. 

 

Alnæs et al (2007), addressed the use of high level languages, symbolic Mathematical 

tools and code generation in an implementation of the finite element method, using a 
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nonlinear hyperelasticity equation as example. The application we have in mind for the 

equations they presented is the simulation of the passive elastic properties of heart and 

blood vessel tissue.  Wei et al. (2007) proposed the use of symbolic computation for 

the evaluation of measurement uncertainty. The general method and procedure were 

discussed, and its great potential and powerful features for measurement uncertainty 

evaluation were demonstrated through examples. Although the symbolic computation 

was performed using Maple's powerful Mathematical computing engine, it is possible 

to use other technologies for this same symbolic computation. Gurung and Freere 

(2007) presented the use of Matlab symbolic computation technique to model and 

simulate self-excited induction generator. In this technique, the computer itself carries 

out both the tedious job of deriving the complex coefficients of the polynomial 

equations and solving them. Hence the modelling and programming becomes very 

simple yet versatile. Good agreement between the results they obtained from the 

conventional method and that obtained using symbolic computation validates the 

effectiveness of their new technique. Jiang and Wang (2008) developed a FEM program 

by using Mathematica, a symbolic algebra system to help students to understand how 

finite element methods (FEM) deal with the plasticity. The program is compact and of 

very good readability and would positive results in the teaching the theory of plasticity. 

Lee (2009) offered contemporary look at how the historical elements in symbolic 

computation has led to a renewed interest symbolic in engineering modelling and 

simulation today. Symbolic techniques are showing promise for the modernization of 

model development and coding techniques in hardware in the loop (HiL) simulation 

applications. Emerging methodologies are indicating significant reduction in effort in 

model development and an acceleration of the actual computation coded in HiL and 

embedded code applications.  
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Papusha et al. (2009) proposed a new symbolic technique for offshore design 

technology. Illustrations were given for a drill stem and a riser. Both symbolic and 

numerical solutions derived with Mathematica are applied to solve problems in 

offshore design technology. All symbolic approaches are based on solutions of the 

linear boundary problems that arise. Additionally, a new symbolic solution for the 

generic boundary problem was also discussed. Adeleye and Fakinlede (2010) also 

developed a symbolic finite element solution for the problem of heat transfer in radial 

fin of triangular profile. The result of their symbolic computation was used for 

optimization of fin material usage. Alnæs and Mardal (2010) showed that employing a 

symbolic engine inside a finite element form compiler can lead to speed-up of several 

orders of magnitude in addition to a user-friendly and time saving problem solving 

environment. Their efforts resulted in the open source package SyFi which generates 

unified form-assembly (UFC) code that is directly importable in DOLFIN and other 

libraries implementing this thin interface.  Ari et al. (2005) presented a paper that deals 

with Maple as a symbolic computation techniques. After introducing some capabilities 

of Maple, some examples were discussed to illustrate the Maple.  
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3 
 METHODOLOGY 

3.1 Large Deformation Model of Compliant Mechanisms 

3.1.1 Continuum Mechanics Formulation 

The basic continuum compliant mechanism problem is sketched in Fig. 3 1. It shows 

the general domain 𝛺 for the design of a mechanism that transforms force applied at 

the input port to a desired displacement at the output port in an efficient way. The 

position vector 𝑿  in the reference position is transformed to 𝒙  in its current position. 

𝑢𝑖𝑛 is the displacement at the input boundary 𝛤𝑖𝑛 as a result of the applied force 𝐹𝑖𝑛 at 

the boundary  while 𝐹𝑜𝑢𝑡 is a virtual force at the output boundary 𝛤𝑜𝑢𝑡 specifying the 

direction of the desired boundary displacement 𝑢𝑜𝑢𝑡. 𝛤𝑔 is the support boundary.  

 

Fig. 3.1:  Deformed continuum compliant mechanism 

The boundary conditions of imposed displacement on 𝛤𝑖𝑛 are called the Dirichlet, 

whereas the conditions of imposed traction on 𝛤𝜎 are referred to as the Neumann 

boundary conditions. In any well-posed boundary value problem, the complete 
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boundary is split between the Dirichlet and von Neumann boundary 𝛤𝑖𝑛⋃ 𝛤𝜎 = 𝛤, such 

that the two never intersect 𝛤𝑖𝑛⋂ 𝛤𝜎 = ∅. In other words, if we want to ensure that a 

boundary value problem is well posed, we must not impose both displacement and 

traction at the same boundary. The main goal of the solution procedure for a boundary 

value problem is to find the displacement field 𝑢(𝑥) resulting from applied volume 

𝑏(𝑥), imposed traction 𝑡 and imposed displacement  𝑢̅. The resulting displacement field 

can be computed starting either from strong or weak form of the boundary value 

problem. It is important to note that not only the displacement field is of interest, but 

also the strain and stress field. In fact, the latter are often more important than the 

displacement for verifying the risk of damage or fracture 

 

A bare minimum of fundamental concepts in continuum mechanics are provided here, 

as theoretical background for large deformations and hyperelastic constitutive material 

relations. Most, if not all of the information provided in this section have been 

extensively discussed in numerous publicly available sources of literature. As a 

proposed starting point, the interested reader is referred to Holzapfel (2000) and Mase 

and Mase (1999) for a quite comprehensive review of continuum mechanics, to 

Criscione (2002) and Freed (1995) for a thorough synopsis of natural strain and strain 

rate, and finally to Bonet and Wood (1997) for a similar review of the basic concepts 

of continuum mechanics used in constitutive laws for hyperelasticity.  

 

3.1.0.1 Kinematics  

A compliant mechanism has material points whose positions are given by the vector 𝑿  

in a fixed reference configuration 𝛺𝑟 in 2-D space. After the body is loaded each 

material point is described by its position vector 𝒙, in the current configuration 𝛺𝑐.  The 
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position vector in the current configuration is given in terms of its Cartesian 

components as, 

 𝑿 = 𝑋𝑖𝑬𝑖    (3.1) 

 𝒙 = 𝑥𝑖𝒆𝑖 (3.2) 

iE
 
and ie  are the unit vectors and summations are implied.  

 

3.1.1.2     Cauchy-Green Deformation Tensors 

There are two Cauchy-Green Deformation Tensors in the analysis of deformable 

continuum. We have the right and left Cauchy-Green Deformation Tensors. Right 

Cauchy-Green tensor is given as, 

 𝑪 = 𝑭𝑻̇ ̇ ∙ 𝑭   (3.3) 

In the same way, the Left Cauchy-Green Deformation (also known as Finger) tensors 

is given as, 

 𝒃 = 𝑭 ∙ 𝑭𝑻̇   (3.4) 

The Deformation Gradient F  is given as, 

 
𝑭 =

𝜕𝒙

𝜕𝑿
 

  (3.5) 

The determinant of the deformation gradient is usually denoted by J and is a measure 

of the change in volume, i.e. 

 𝐽 = 𝑑𝑒𝑡 𝑭̇  (3.6a) 

 𝐽2 = 𝑑𝑒𝑡 𝑪̇  (3.6b) 

 

3.1.1.3     Strain Measures 

The change in scalar product can be found in terms of the material vectors 𝑑𝑋1 and 

𝑑𝑋2 



 

Chapter 3: Methodology 

70 

 

 1

2
(𝑑𝑥1 ∙ 𝑑𝑥2 − 𝑑𝑋1 ∙ 𝑑𝑋2) =

1

2
𝑑𝑋1 ∙ (𝑪 − 𝟏) ∙ 𝑑𝑋2 = (𝑑𝑋1 ∙ 𝑬 ∙ 𝑑𝑋2) 

 

(3.7) 

 

Green (Lagrangian) strain 𝑬 is then given as, 

 
𝑬 =

1

2
(𝑪 − 𝟏) =

1

2
(𝑭𝑻 ∙ 𝑭 − 𝑰) 

=
1

2
(𝛻𝒖 + (𝛻𝒖)𝑇 + 𝛻𝒖 ∙ (𝛻𝒖)𝑻) 

 

(3.8) 

 

Index notation: 

 
𝐸𝑖𝑗 =

1

2
(𝐹𝑘𝑙 − 𝛿𝑖𝑗) =

1

2
(
𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑗

𝜕𝑋𝑖
+

𝜕𝑢𝑘

𝜕𝑋𝐽
+

𝜕𝑢𝑘

𝜕𝑋𝑖
)  

 

(3.9) 

 

Alternatively, the same change in scalar product can be expressed with reference to the 

spatial elemental vectors 𝑑𝑥1and 𝑑𝑥2, 

 1

2
(𝑑𝑥1 ∙ 𝑑𝑥2 − 𝑑𝑋1 ∙ 𝑑𝑋2) =

1

2
(𝑑𝑥1 ∙ (𝑰 − 𝒃−1) ∙ 𝑑𝑥2 

= 𝑑𝑋1 ∙ 𝒆 ∙ 𝑑𝑋2 

 

(3.10) 

 

Almansi (Eulerian) strain is then given as,  

 
𝒆 =

1

2
(𝑰 − 𝒃−1) =

1

2
( 𝑰 − 𝑭−𝑇 ∙ 𝑭−1) 

 

(3.11) 

 

3.1.1.4 Isotropic Hyperelasticity 

Large strain elasticity, or hyperelasticity, is defined in terms of a strain energy function. 

In order to facilitate the extension of the above equations to the hyperelastic case, the 

standard theory of isotropic hyperelasticity is briefly reviewed first in this section. 

Hyperelasticity implies the existence of a strain energy density function 𝛹 dependent 

upon the Lagrangian or right Cauchy-Green tensors as 

 𝛹 = 𝛹(𝑪,𝑿) = (𝑬, 𝑿) (3.12) 

The second Piola-Kirchhoff stress tensor 𝑺 can now be expressed as 
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𝑺 = 2

𝜕𝛹

𝜕𝑪
=

𝜕𝛹

𝜕𝑬
 

 

(3.13) 

The stress-strain relation could be written in terms of the Lagrangian elasticity tensor 

C  as  

 
ℂ =

𝜕𝑺

𝜕𝑬
= 2

𝜕𝑺

𝜕𝑪 
= 4

𝜕2𝛹

𝜕𝑪𝜕𝑪
 

 

(3.14) 

 

3.1.2 Development of Large deformation Model for Compliant 

Mechanisms 

 

Finite element implementations of nearly incompressible material models often employ 

decoupled numerical treatments. The strain energy density function for such a material 

is decoupled into the dilatation, 𝑈 (𝐽) and deviotoric, 𝛹 (𝑪) parts (Sun et al., 2008) as.  

 𝛹(𝑪) = 𝛹(𝑪̅) + 𝑈(𝐽) (3.15) 

Where 

 
𝛹(𝑪̅) =

1

2
𝜇(𝑡𝑟𝑪 − 3) 

(3.16) 

 
𝑈(𝐽) =

1

2
𝑘(𝐽 − 1)2 

(3.17) 

𝑘 and 𝜇 are the material properties known as bulk and shear modulus respectively. 

 𝑪 = 𝑭𝑇𝑭 (3.18) 

Mixed elements are often used to accommodate the volume constraint in 

incompressible material problem. They are designed to model fully or nearly 

incompressible hyperelastic materials. For a hyperelastic model that can have multiple 

deformations state for the same stress level, the penalty factor and the use of Lagrangian 

multipliers might not be most adequate. It is convenient to use a three-field mixed Hu-

Washizu variation form to overcome volumetric locking (Wriggers, 2010). Assuming 

an independent approximation of the displacement 𝑢, the hydrostatic pressure 𝑝 and the 
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volumetric change parameter 𝜃, a variational form for the finite deformation 

hyperelastic problem is given by (Mathisen et al., 2011) 

 
𝛿𝛱(𝑢, 𝑝, 𝜃) = ∫[

𝛺

𝛹(𝑪̅) + 𝑝(𝐽 − 𝜃)]𝑑𝑉 + 𝛿𝛱𝑒𝑥𝑡  
 

(3.19) 

Where 𝛱𝑒𝑥𝑡 is the functional for effects of body forces and surface tractions and 𝑝 is the 

mixed pressure in the deformed configuration. It is convenient to make a multiplication 

split of the deformation gradient into a dilatation part 𝑭𝑣𝑜𝑙 and isochoric part 𝑭𝑖𝑠𝑜. 

 𝑭 = 𝑭𝑣𝑜𝑙𝑭𝑖𝑠𝑜 (3.20) 

Mathisen et al. (2011) defined the two parts as, 

 𝑭𝑣𝑜𝑙=𝐽 (3.21) 

 𝑭𝑖𝑠𝑜=1 (3.22) 

Equation (3.22) is required for constant volume state. The mixed right Green 

deformation tensor is expressed as, 

 𝑪̅ = 𝑭̅𝑻𝑭̅ (3.23) 

Where 

 
𝑭̅ = (

𝜃

𝐽
)𝑭 

 

(3.24) 

C is the mixed right Cauchy-Green deformation tensor. The variation of Eq. (3.19) 

gives, 

 
𝛿𝛱 = ∫[

𝜕𝛹

𝜕𝑪̅
: 𝛿𝑪̅ + 𝛿𝑝(𝐽 − 𝜃) + 𝑝(𝛿𝐽 − 𝛿𝜃)] 𝑑𝑉

𝛺

+ 𝛿𝛱𝑒𝑥𝑡 
(3.25) 

A second Piola-Kirchhoff stress is related to the derivative of the stored energy function 

through Eq. (3.26). 

 
𝑺 = 2

𝜕𝛹

𝜕𝑪̅
 

 

(3.26) 

Substituting Eq. (3.26) into Eq. (3.19) we have, 
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𝛿𝛱 = ∫[

1

2
𝛿𝑪 ̅ ∶ 𝑺̅ + 𝛿𝑝(𝐽 − 𝜃) + 𝑝(𝛿𝐽 − 𝛿𝜃)] 𝑑𝑉

𝛺

+ 𝛿𝛱𝑒𝑥𝑡 
 

(3.27) 

The first term in Eq. (3.27) is the inner virtual work 𝛿𝛱𝑖𝑛𝑛𝑒𝑟 given as, 

 
𝛿𝛱𝑖𝑛𝑛𝑒𝑟 = ∫[

1

2
 𝑺̅ ∶ 𝛿𝑪̅] 𝑑𝑉

𝛺

 
 

(3.28) 

The variation of the mixed right deformation tensor 𝑪 ̅  is given as, 

 
𝛿𝑪 ̅ = (

𝜃

𝐽
) 𝛿𝑪 + (

𝛿𝜃

𝜃
−

𝛿𝐽

𝐽
) 𝑪̅ 

 

(3.29) 

But  

 𝛿𝐽 = 𝐽𝑪−1 ∶ 𝛿𝑪 (3.30) 

Substituting Eq. (3.30) into Eq. (3.29), gives 

 
𝛿𝑪 ̅ = (

𝜃

𝐽
) [𝑰 −

1

3
𝑪 ⊗ 𝑪−1] : 𝛿𝑪  

 

(3.31) 

The integrand in Eq. (3.28) could now be expanded as  

 𝛿𝐶𝑟̅𝑠𝑆𝑟̅𝑠 = 𝛿𝐹̅𝑖𝑟𝐹̅𝑖𝑠𝑆𝑟̅𝑠  

=
1

3

𝛿𝜃

𝜃
𝐹̅𝑖𝑟𝐹̅𝑖𝑠𝑆𝑟̅𝑠 + (

𝜃

𝐽
) [𝛿𝐹𝑖𝑟 −

1

3
𝛿𝐹𝑗𝑠𝐹𝑗𝑠

−1𝐹𝑖𝑟]𝐹̅𝑖𝑠𝑆𝑟̅𝑠 

 

(3.32) 

 

 

The Kirchhoff and Cauchy stresses based on the mixed deformation gradient are related 

as (Zienkiewicz and Taylor, 2000) 

 
𝜏̅𝑖𝑗 = 𝐹̅𝑖𝑟𝐹̅𝑖𝑠𝑆𝑟̅𝑠 = 𝜃𝜎̅𝑖𝑗     ;           𝝉̅ =

1

𝜃
 𝑭̅𝑺̅𝑭̅𝑇 = 𝝈̅ 

 

(3.33) 

If we also note that  

 𝛿𝐹𝑗𝑠𝐹𝑗𝑠
−1 = 𝛿𝑢𝑗,𝑘𝐹𝑘𝑠𝐹𝑘𝑠

−1 = 𝛿𝑢𝑗,𝑘𝛿𝑘𝑗 = 𝛿𝑢𝑗,𝑗 (3.34) 

Substituting Eqs. (3.33) and (3.34) into Eq. (3.32), gives 

 
𝛿𝐶𝐼̅𝐽𝑆𝐼̅𝐽 =

1

3
(
𝛿𝜃

𝜃
− 𝛿𝑢𝑗𝑗) 𝜏̅𝑟𝑟 + 𝛿𝑢𝑖𝑗 𝜏̅𝑖𝑗 

= (
1

3

𝛿𝜃

𝜃
𝜏̅𝑟𝑟 +

𝜕𝑢𝑖

𝜕𝑥𝑗
) + (𝜏̅𝑖𝑗 −

1

3
𝛿𝑖𝑗 𝜏̅𝑟𝑟) 

 

(3.35) 

 

Equation (3.35) could be expressed in terms of Cauchy stress using Eq. (3.33) as 
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𝛿𝐶𝑖̅𝑗𝑆𝑖̅𝑗 =

1

3
𝛿𝜃𝜎̅𝑘𝑘 + 𝛿𝑢𝑖𝑗 (𝜎̅𝑖𝑗 −

1

3
𝛿𝑖𝑗𝜎̅𝑘𝑘)𝜃 

 

(3.36) 

Substituting Eq. (3.36) into Eq. (3.27) gives 

 
𝛿𝛱 = ∫[𝛿𝜃(𝑝̅ − 𝑝) + 𝛿𝑝(𝐽 − 𝜃)]𝑑𝑉

𝛺

+ ∫𝛿𝑢𝑖,𝑗(𝜎̅𝑖𝑗 + 𝛿𝑖𝑗𝑝̅)

𝛺

𝜃 + 𝑝𝛿𝐽

+ 𝛿𝛱𝑒𝑥𝑡 

 

(3.37) 

Where 

 
𝑝̅ =

𝜎̅𝑖𝑖

3
= 𝑡𝑟𝝈̅ 

 

(3.38) 

The variation of the deformation tensor is also given as (Bonet and Wood, 1997) 

 𝛿𝐽 = 𝐽 𝑑𝑖𝑣𝛿𝒖 (3.39) 

Equation (3.39) simplifies Eq. (3.37) to 

 
𝛿𝛱 = ∫[𝛿𝜃(𝑝̅ − 𝑝)]𝑑𝑉

𝛺

+ ∫𝛿𝜀𝑖𝑗 [𝜎̅𝑖𝑗 + 𝛿𝑖𝑗  (
𝐽

𝜃
𝑝 − 𝑝̅)] 𝜃𝑑𝑉

𝛺

+ ∫[𝛿𝑝(𝐽 − 𝜃)]𝑑𝑉

𝛺

+ 𝛿𝛱𝑒𝑥𝑡 

 

 

(3.40) 

 

3.1.3 Finite Element Discretization 

The current configuration x may be expressed in terms of a displacement u  from the 

reference configuration coordinates X  as  

 𝒙 = 𝑿 + 𝒖 (3.41) 

The reference coordinate and displacement field are approximated by isoparametric 

interpolations given in Eqs. (3.42) and (3.43) respectively. 

 𝑋𝑖 = 𝑁𝑟(𝜉)𝑋̂𝑖
𝑟 (3.42) 

 𝑢𝑖 = 𝑁𝑟(𝜉)𝑢̂𝑖
𝑟 (3.43) 

The approximation of the displacement tensor becomes 

 𝑢𝑖,𝑗 = 𝑁𝑟,𝑗𝑢̂𝑖
𝑟 (3.44) 

The pressure and volume are interpolated as  

 𝑝 = 𝑁𝑝𝒑̂ (3.45) 
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 𝜃 = 𝑁𝑝𝜽̂ (3.46) 

Using the approximations of Eqs. (3.42) and (3.43) the matrix form of Eq. (3.40) 

becomes 

 
𝛿𝛱 = 𝛿𝒖̂𝑇 ∫𝑩𝑢

𝑇𝜎̌𝜃𝑑𝑉

𝛺

+ 𝛿𝒑̂𝑇 ∫𝑁𝑝
𝑇(𝐽 − 𝜃)𝑑𝑉

𝛺

+ 𝛿𝜃𝑇 ∫𝑁𝜃
𝑇(𝑝̅ − 𝑝)𝑑𝑉 +

𝛺

𝛿𝛱𝑒𝑥𝑡 

 

 

(3.47) 

 

Where 𝑩𝑢 is the strain displacement matrix given by 

 

𝑩𝑢 =

[
 
 
 
 
 
 
𝜕𝑁𝑟

𝜕𝑥1

𝜕𝑁𝑟

𝜕𝑥2
0

0
𝜕𝑁𝑟

𝜕𝑥2
0

𝜕𝑁𝑟

𝜕𝑥2

𝜕𝑁𝑟

𝜕𝑥1
0
]
 
 
 
 
 
 

 

 

 

(3.48) 

 
𝝈̌ = 𝝈̅ + (

𝐽

𝜃
𝑝 − 𝑝̅)𝒎 

 

(3.49) 

𝑝̅ and 𝒎 are the mean stress and the mean matrix operator respectively, given as 

 
𝒑̅ =

1

3
𝒎𝑇𝝈̅ 

(3.50) 

 𝒎 = [1,1,1,0,0,0,0]𝑇 (3.51) 

   

3.1.4    Linearization of inner Virtual Work  

Linearization of Eq. (3.25) using the G𝑎̂teaux derivative may be assembled as  

 
∆(𝛿𝛱) = ∫ [𝛿𝑪̅: ℂ ̅: ∆𝑪̅ + ∆(𝛿𝑪̅):

𝜕𝛹

𝜕𝑪̅
] 𝑑𝑉

𝛺̅ 

+ ∫𝑝∆(𝛿𝐽)𝑑𝑉

𝛺

+ ∫𝛿𝑝(∆𝐽 − ∆𝜃)𝑑𝑉

𝛺

+ ∫∆𝑝(𝛿𝐽 − 𝛿𝜃)𝑑𝑉

𝛺

+ ∆(𝛿𝛱𝑒𝑥𝑡) 

 

 

(3.52) 

Where  ∆𝜃, ∆𝑝, ∆𝑪̅, ∆𝐽 etc. represent incremental quantities and ℂ̅ is the material 

tangent moduli given as 

 
ℂ̅ = 4

𝜕2𝛹

𝜕𝑪̅𝜕𝑪̅
= 2

𝜕𝑺̅

𝜕𝑪̅
 

 

(3.53) 

Eq. (3.52) could be written in indicial form as 
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∆(𝛿𝛱) = ∫ [𝛿𝐶𝑖̅𝑗ℂ̅𝑖𝑗𝑘𝑙∆𝐶𝑖̅𝑗 +

1

2
∆(𝛿𝐶𝑖̅𝑗)𝑆𝑖̅𝑗] 𝑑𝑉

𝛺̅ 

+ ∫𝑝 ∆ (𝛿𝐽)𝑑𝑉

𝛺

+ ∫𝛿𝑝 

𝛺

(∆𝐽 − ∆𝜃)𝑑𝑉 + ∫∆𝑝 

𝛺

(𝛿𝐽 − 𝛿𝜃)𝑑𝑉 + ∆(𝛿𝛱𝑒𝑥𝑡 

 

 

(3.54) 

 

The spatial tangent of a constitutive model of Eq. (3.53) is denoted by the 

transformation given as (Zienkiewicz and Taylor, 2000) 

 
ℂ̂ =

1

𝜃
 𝑭̅ 𝑭̅ℂ̅ 𝑭̅𝑇𝑭̅𝑇 

 

(3.55) 

The inner virtual work of Eq. (3.54) could be written in matrix form as 

 

∆(𝛿𝛱𝑖𝑛𝑛𝑒𝑟) = [𝛿𝒖𝑇 , 𝛿𝒖𝑝
𝑇 , 𝛿𝜽̂𝑇] [

𝑲𝑢𝑢 𝑲𝑢𝜃 𝑲𝑢𝑝

𝑲𝜃𝑢 𝑲𝜃𝜃 −𝑲𝜃𝑝

𝑲𝑝𝑢 −𝑲𝑝𝜃 0

] [

∆𝒖̂

∆𝜽̂

∆𝒑̂

] 

 

 

(3.56) 

Eq. (3.56) may be split into the constitutive 𝑲𝑖𝑗
𝑚 and geometric 𝑲𝑖𝑗

𝑔
 parts 

 𝑲𝑖𝑗 = 𝑲𝑖𝑗
𝑚 + 𝑲𝑖𝑗

𝑔  (3.57) 

The constitutive tangent terms for symmetric moduli are expressed as 

 
𝑲𝑢𝑢

𝑚 = ∫𝑩𝑢
𝑇  𝑫̅11𝑩𝑢𝜃𝑑𝑉 

𝛺

  

(3.58a) 

 
𝑲𝑢𝜃

𝑚 = ∫𝑩𝑢
𝑇  𝑫̅12𝑩𝑢𝑁𝜃𝑑𝑉 = 𝑲𝑢𝜃

𝑚 𝑇
 

𝛺

  

(3.58b) 

 
𝑲𝑢𝑝 

𝑚 = ∫𝑩𝑢
𝑇  𝒎 𝑁𝑝 𝐽𝑑𝑉 = 𝑲𝑝𝑢

𝑚 𝑇 

𝛺

  

(3.58c) 

 
𝑲𝜃𝜃 

𝑚 = ∫𝑁𝑢
𝑇  𝑫̅22 𝑁𝜃𝜃 𝑑𝑉 

𝛺

  

(3.58d) 

Where  

 
𝑁𝜃 =

1

𝜃
𝑁 

 

(3.59) 

and in matrix notation 

 
𝑫̅11 = 𝑰𝑑𝑒𝑣𝑫̅𝑰𝑑𝑒𝑣 −

2

3
(𝒎 𝝈̅𝑑𝑒𝑣

𝑇 + 𝝈̅𝑑𝑒𝑣𝒎
𝑇) + 2( 𝑝̅ − 𝑝̂ )𝐼

− (
2

3
 𝑝̅ − 𝑝̂)𝒎 𝒎𝑇 

 

(3.60a) 
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𝑫̅12 =

1

3
𝑰𝑑𝑒𝑣𝑫̅ 𝒎 +

2

3
 𝜎̅𝑑𝑒𝑣 = 𝑫̅21

𝑇  
 

(3.60b) 

  
𝑫̅22 =

1

9
𝒎𝑇 𝑫̅ 𝒎 −

1

3
 𝑝̅ 

 

(3.60c) 

𝑫̅ is the transformation of ℂ̂ given as 

  

 𝑫̅
 
→ ℂ̂ =

[
 
 
 
 
 
 
 
 
𝐷11 𝐷12 𝐷13 𝐷14 𝐷15 𝐷16

𝐷21 𝐷22 𝐷23 𝐷24 𝐷25 𝐷26

𝐷31 𝐷32 𝐷33 𝐷34 𝐷35 𝐷36

𝐷41 𝐷42 𝐷43 𝐷44 𝐷45 𝐷46

𝐷51 𝐷52 𝐷53 𝐷54 𝐷55 𝐷56

𝐷61 𝐷62 𝐷63 𝐷64 𝐷65 𝐷66]
 
 
 
 
 
 
 
 

 

 

 

 

 

(3.61) 

and the deviatoric matrix operator 𝑰𝑑𝑒𝑣 and stress 𝝈̅𝑑𝑒𝑣 are given as 

  
𝑰𝑑𝑒𝑣 = 𝑰 −

1

3
𝒎 ⨂ 𝒎 

 

(3.62a) 

  𝝈̅𝑑𝑒𝑣 = 𝑰𝑑𝑒𝑣 ∶ 𝝈̅ (3.62b) 

𝑰 is the fourth rank unit tensor. 𝑰̂ is the matrix form of the fourth rank identity tensor 

  

𝑰̂  =
1

2

[
 
 
 
 
 
 
 
2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1]
 
 
 
 
 
 
 

 

 

 

 

 

(3.63) 

The geometric tangent term of Eq.  (3.57) is given as 

  
𝑲𝑢𝑢

𝑔
= ∫(𝛻𝑵: 𝝈̅ 𝛻𝑵)𝑑𝑉

𝛺 

 ;            𝑲𝑢𝑢
𝑔

= ∫𝑁𝑟,𝑖𝜎̅𝑖𝑗𝑁𝑠,𝑗𝑑𝑉

𝛺 

  (3.64) 

Where 𝛻𝑵 is the spatial gradient of the shape function 

The compact form of linearized inner virtual work of Eq. (3.57) could be written in the 

form of the geometric element stiffness matrix 𝒌𝑔
𝑒(𝒖𝑒) and the deformation-dependent 

material element stiffness matrix 𝒌𝑚
𝑒 (𝒖𝑒). 

  ∆𝛿𝛱𝑖𝑛𝑛𝑒𝑟
𝑒 ≈ 𝛿𝒖𝑒 ∙ [𝒌𝑔

𝑒(𝒖𝑒) + 𝒌𝑚
𝑒 (𝒖𝑒)]∆𝒖𝑒  

(3.65) 
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= 𝛿𝒖𝑒 . 𝒌𝑡
𝑒(𝒖𝑒)∆𝒖𝑒 

with the sum yielding the tangential element stiffness matrix 𝒌𝑡
𝑒(𝒖𝑒) and 𝛿𝒖𝑒 is the 

variation of the displacement vector. 

 

3.1.5   Principle of Virtual Work 

The principle of virtual work postulates that the external and the internal virtual work 

are the same. 

  𝛿𝛱𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛿𝛱𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 + 𝛿𝛱𝑖𝑛𝑛𝑒𝑟 = 𝛿𝛱𝑒𝑥𝑡 (3.66) 

This means that the internal virtual work stored in the material is equal to the external 

virtual work done on the material by external forces. If we consider contact force 𝒕 and 

body force 𝒃 as external forces the following relation holds: 

  
𝛿𝛱𝑒𝑥𝑡 = ∫𝛿𝒖 ∙ 𝒃 𝜌 𝑑𝑉

𝛺

+ ∫𝛿𝒖 ∙ 𝒕 𝑑𝑆

𝛺

  

(3.67) 

The virtual inertial work resulting from the kinetic energy is given as 

  
𝛿𝛱𝑖𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∫𝛿𝒖 ∙ 𝒖̈ 𝜌 𝑑𝑉

𝛺

  

(3.68) 

3.1.6     Approximation of Inertial Virtual Work 

Besides discretization of inner virtual work, transient mechanical problems also 

demand discretization of dynamic virtual work. If we approximate the variation of 

displacements as well as continuous accelerations with the assistance of shape functions 

according to Eqs. (3.42) and (3.43), we get the approximation of virtual work of inertial 

forces. 

  
𝛿𝛱𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

𝑒 = 𝛿𝒖𝑒 ∙ ∫𝑵𝑇𝑵 𝜌 𝑑𝑉 𝒖̈𝑒

𝛺

= 𝛿𝒖𝑒 ∙ 𝒎𝑒 ∙ 𝒖̈𝑒  

(3.69) 

Where  
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𝒎𝑒 = ∫𝑵𝑇 𝑵 𝜌 𝑑𝑉

𝛺

   

(3.70) 

Then the system mass matrix 𝑴 is given as 

  
𝑴 = ⋃𝒎𝑒

𝑁𝐸

𝑒=1

 
 

(3.71) 

𝑁𝐸 is the number of elements 

 

3.1.7 Approximation of Virtual Work of External Loads 

The loads acting on a plane element can be divided into loads acting in the field and 

those acting at the boundaries of the field. Typical loads in the field are gravitational 

loads whereas actual structural loads are dominated by boundary loads such as pressure. 

With the help of displacement variation approximation as in Eqs. (3.42) and (3.43), a 

consistent element load vector of volume loads 𝒃 can be obtained based on external 

virtual work. 

 

3.1.7.1    Volume loads 

  
𝛿𝛱𝑒𝑥𝑡

𝛺 = 𝛿𝒖𝒆 ∙ ∫𝑵𝑇 𝒃 𝜌 𝑑𝑉 = 𝛿𝒖𝒆 ∙ 𝒓𝑝
𝑒

𝜴

 (3.72) 

Where the element vector of volume forces 𝒓𝑝
𝑒  is then given as 

  
𝒓𝑝

𝑒 = ∫𝑵𝑇 𝑏 𝜌 𝑑𝑉

𝛺

 (3.73) 

 

3.1.7.2       Boundary loads 

The element load vector of element boundary loads 𝒕 is derived by observation of 

external virtual work. Here, the boundary 𝛤 can be divided into four boundaries 𝛤𝑖   of 

the element. 
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𝛿𝛱𝑒𝑥𝑡

𝛤 = ∫𝛿𝒖 𝒕 𝑑𝛤 =

𝛺

 ∑ ∫𝛿𝒖 𝒕 𝑑𝛤𝑖 =

𝛤𝑖

4

𝑖=1 

∑ 𝛿𝛱𝑒𝑥𝑡
𝛤𝑖𝑒

4

𝑖=1 

 
 

(3.74) 

The approximation of displacement variation of each boundary 𝛤𝑖𝑒 after the Jacobi 

transformation is given as 

  𝛿𝛱𝑒𝑥𝑡
𝛤𝑖 = 𝛿𝒖𝑒 ∙ 𝒓𝑛𝑖

𝑒  (3.75) 

The summation of all correspondingly calculated equivalent loads 𝒓𝑛𝑖
𝑒  for 𝒓 = 1, 2, 3, 4 

yields the consistent equivalent loads of an element. 

  
𝛿𝛱𝑒𝑥𝑡

𝛤 = ∑ 𝛿𝛱𝑒𝑥𝑡
𝛤𝑖 =

4

𝑖=1 

∑𝛿𝒖𝑒 ∙ 𝒓𝑛𝑖
𝑒 = 𝛿𝒖𝑒 ∙ ∑𝒓𝑛𝑖

𝑒 = 𝛿𝒖𝑒 ∙ 𝒓𝑛
𝑒

4

𝑖=1

4

𝑖=1

 
 

(3.76) 

Where the element vector of boundary forces 𝒓𝑛
𝑒  is then given as 

  
𝒓𝑛

𝑒 = ∫𝑵𝑇 𝒕 𝑑𝛤

𝛺

  

(3.77) 

3.1.8 Nonlinear Elastomechanics Equations of the Continuum Compliant 

Mechanism 

 

The principle of virtual work can now be approximated in the element plane as 

  δ𝐮e ∙ 𝐦e𝐮̈e + δ𝐮e ∙ 𝐫i
e(𝐮e) = δ𝐮e ∙ (𝐫p

e + 𝐫n
e) (3.78) 

By summing Eq.  (3.78) or explicitly, the vector of inner loads, 

 

  
𝒓𝑖(𝒖) = ⋃𝒓𝑖

𝑒(𝒖𝒆)

𝑁𝐸

𝑒=1

 
 

(3.79) 

with the vector of external loads (𝐫p
e + 𝐫n

e) and the mass matrix 𝐦e, we obtain the 

system-related spatially discrete formulation of the principle of virtual work, 

  𝛿𝒖 ∙ 𝑴𝒖̈ + 𝛿𝒖 ∙ 𝒓𝑖(𝒖) = 𝛿𝒖 ∙ 𝒓 (3.80) 

which can be transferred  to an initial value problem of non-linear elastodynamics by 

application of lemma of variation calculus.  The problem is defined by the semi-discrete 

differential equation of motion of the second order. 
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  𝑴𝒖̈ + 𝒓𝑖(𝒖) = 𝒓 (3.81) 

For elastostatic or quasi-static problems of the continuum compliant mechanism, we 

can formulate the discrete equation of nonlinear static equilibrium by neglecting the 

inertial forces 𝑴𝒖̈ = 0. 

  𝒓𝑖(𝒖) = 𝒓 (3.82) 

In the scope of the iterative solution of nonlinear dynamic differential vector Eq.  (3.81) 

or the nonlinear static vector Eq. (3.82), the linearization of inner forces is of great 

importance. In the element plane, the linearization of inner forces 𝒓𝑖(𝒖)  is defined by 

linearization of the inner virtual work in Eq. (3.79). By summing the linearized inner 

forces and parts of the tangential stiffness matrix  

  
𝛥𝒓𝑖(𝒖) = ⋃𝛥𝒓𝑖

𝑒(𝒖𝑒)

𝑁𝐸

𝑒=1

 
 

(3.83) 

  
𝒌𝑚(𝑢) = ⋃𝒌𝑚

𝑒 (𝒖𝑒)

𝑁𝐸

𝑒=1

 
 

(3.84) 

  
𝒌𝑔(𝑢) = ⋃𝒌𝑔

𝑒(𝒖𝑒)

𝑁𝐸

𝑒=1

 
 

(3.85) 

  
𝒌𝑡(𝑢) = ⋃𝒌𝑡

𝑒(𝒖𝑒)

𝑁𝐸

𝑒=1

 
 

(3.86) 

The linearization of the system vector of internal forces is eventually gotten as function 

of the material system stiffness matrix 𝑲𝑚(𝒖), the geometric system stiffness matrix 

𝑲𝑔(𝒖), the tangential system stiffness matrix 𝑲𝑡(𝒖) and the increment of the system 

displacement vector 𝛥𝒖  

  𝛥𝒓𝑖(𝒖) = (𝑲𝑔(𝒖) + 𝑲𝑚(𝒖))𝛥𝒖 = 𝑲𝑡(𝒖)𝛥𝒖 (3.87) 
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3.2    Effect of Shear Deformation in the Analysis of Compliant 

Mechanism 
 

The model is based on the selection of the geometry, material properties, the loading 

and boundary conditions, and any other specific assumptions made. The purpose of the 

analysis is to answer certain questions regarding the stiffness, stresses developed and 

strength of the structure. Hence, when studying the behaviour of the structure, we would 

like to predict the future not only when the structure is operating in normal conditions, 

which mostly only requires a linear analysis, but also when the structure is subjected to 

severe loading conditions, which usually requires a highly nonlinear analysis. When 

considering nonlinear analysis, it is necessary to include the shear deformation terms. 

 
Fig. 3.2: Deformed and Underformed Beam Element 

  
 

 
Fig. 3.3: Detail of the Beam Element with Shear Deformation 
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Fig.3. 2 shows the deformed and underformed beam element in the 𝑥 − 𝑧 plane while 

Fig. 3.3. shows the detail of the beam element with shear deformation. 𝑅 is the radius 

of curvature of the beam. 𝑑𝑥, 𝑑𝑤 and 𝑑𝑠 form a right angled triangle.  𝑑𝑠 is a very small  

portion on the centroid of the beam. The curvature 𝑘 of the beam element is given as 

 
𝑘 =

𝑐𝑑2𝑤

𝑑𝑥2
 

 

(3.88) 

Where   

 

𝑐 = 1/(√1 + (
𝑑𝑤

𝑑𝑥
)
2

)

3

 

 

(3.89) 

 
Fig. 3.4: c plotted against  θ   for 0 ≤ θ ≤ π 2    

 

Fig. 3.4 is the graph of 𝑐  against 𝜃. The deviation of the value of 𝑐  from unity represents 

the factor by which the compliant system undergoes large deflection. Compliant 

members undergo large deflections which introduce geometric nonlinearity. For small 

deflection, the slope of the deflected middle surface are small compared to unity so that 

the curvature is approximated as 

 
𝑘 ≈

𝑑2𝑤

𝑑𝑥2
 

(3.90) 
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3.2.1 Kinetic Energy  

In Fig. 2. the displacement vector along the neutral axis in axial direction is given as 

 𝑠𝑥 = 𝑎𝐶𝑜𝑠𝜃 + 𝑏𝑆𝑖𝑛𝜃 + 𝑥 + 𝑢 (3.91a) 

 𝑠𝑧 = 𝑏𝐶𝑜𝑠𝜃 + 𝑎𝑆𝑖𝑛𝜃 + 𝑤 (3.91b) 

Eqs. (3.91a) and (3.91b) could be combined in the form 

 𝑆 = (𝑎𝐶𝑜𝑠𝜃 + 𝑏𝑆𝑖𝑛𝜃 + 𝑥 + 𝑢)𝑖 + (𝑏𝐶𝑜𝑠𝜃 + 𝑎𝑆𝑖𝑛𝜃 + 𝑤)𝑘 (3.92) 

Where 𝑎 and 𝑏 are the coordinates of end 1 of the beam element. 𝑥 is the coordinate 

measured along the element’s neutral axis from 1 to 2. 𝜃 is the angle between the body 

motion and the 𝑥-axis. 𝑢  and 𝑤  are the axial and transverse displacements of point 𝑃  

from the rigid body position.  For small value of 𝜃, 𝐶𝑜𝑠 𝜃 ≈ 1  and 𝑆𝑖𝑛 𝜃 ≈ 0. 

Substituting these values into Eq. (3.92), gives 

 𝑆 = (𝑎 + 𝑏𝜃 + 𝑢)𝑖 + (𝑏 − 𝑎𝜃 + 𝑤)𝑘 (3.93) 

Differentiating Eq. (3.93), the velocity of a particle at point, 𝑃 is given as 

 
𝑉 =

𝑑𝑠

𝑑𝑡
= (𝑏

𝑑𝜃

𝑑𝑡
+

𝑑𝑥

𝑑𝑡
+

𝑑𝑢

𝑑𝑡
) 𝑖 + (𝑎

𝑑𝜃

𝑑𝑡
+

𝑑𝑤

𝑑𝑡
) 𝑘 

 

(3.94) 

The kinetic energy 𝑇𝑝 of beam particles can be expressed as 

 
𝑇𝑝 =

1

2
∬𝜌𝐴𝑥𝑉

2𝑑𝑥𝑑𝑧 
 

(3.95) 

Where 𝜌 is the mass density of the beam material and 𝐴𝑥𝑧 is the cross sectional area of 

the beam element. The kinetic energy 𝑇𝑠 associated with transverse shear is also given 

as 

 
𝑇𝑠 =

1

2
∬𝜌𝐼𝑧 (

𝜕𝛼

𝑑𝑡
)
2

𝑑𝑥𝑑𝑧 
 

(3.96) 

𝛼 is the measure of transverse shear angle. The angular velocity 𝑉𝛼 of any differential 

line segment on the neutral axis of the element is given by 

 
𝑉𝛼 =

𝜕𝜃

𝜕𝑡
+

𝜕2𝑤

𝜕𝑥𝜕𝑡
   

 

(3.97) 
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The kinetic energy 𝑇𝑅 due to rotatory inertia of the beam element is given as 

 
𝑇𝑅 =

1

2
∬𝜌𝐼𝑧 (

𝑑𝜃

𝑑𝑡
+

𝑑2𝑤

𝑑𝑥𝑑𝑡
)

2

𝑑𝑥𝑑𝑧   
 

(3.98) 

The total kinetic energy 𝑇 of the beam element becomes 

 𝑇 = 𝑇𝑝 + 𝑇𝑠 + 𝑇𝑅 (3.99) 

It should be noted that the limits of the double integration in Eqs. (3.95), (3.96) and 

(3.98) are from −
ℎ

2
   to  

ℎ

2
  and 0  to 𝐿. Eq. (3.99) becomes  

 
𝑇 =

1

2
∫ ∫ [𝜌𝐴𝑥𝑥 ((𝑏

𝑑𝜃

𝑑𝑡
+

𝑑𝑥

𝑑𝑡
+

𝑑𝑢

𝑑𝑡
)
2

+ (𝑎
𝑑𝜃

𝑑𝑡
+

𝑑𝑤

𝑑𝑡
)
2

) 
𝐿

0

ℎ
2

−
ℎ
2

+ 𝜌𝐼𝑧 ((
𝑑𝛼

𝑑𝑡
)
2

+ (
𝑑𝜃

𝑑𝑡
+

𝑑2𝑤

𝑑𝑥𝑑𝑡
)

2

)]𝑑𝑥𝑑𝑧 

 

 

(3.100) 

 

3.2.2 Strain – Displacement Relation 

𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are displacements of the member at any point in the 𝑥, 𝑦 and 𝑧 directions 

respectively. 𝑢, 𝑣 and 𝑤 are displacements of the middle surface in the 𝑥, 𝑦 and 𝑧 

directions respectively. The Green strain is given as 

 
𝜀𝑥𝑥 =

𝜕𝑢𝑥

𝜕𝑥
+

1

2
[(

𝜕𝑢𝑥

𝑑𝑥
)
2

+ (
𝜕𝑢𝑦

𝑑𝑥
)

2

+ (
𝜕𝑢𝑧

𝑑𝑥
)
2

] 
 

(3.101) 

The von Karman strains are related to the displacement by 

 𝜀𝑥𝑥 = 𝜀𝑥𝑥
0 + 𝑧𝜀𝑥𝑥

1  (3.102a) 

 
𝜀𝑥𝑥

0 =
𝜕𝑢𝑥

𝜕𝑥
+

1

2
(
𝜕𝑢𝑧

𝑑𝑥
)
2

=
𝜕𝑢𝑥

𝜕𝑥
+

1

2
(
𝜕𝑤

𝑑𝑥
)
2

 
 

(3.102b) 

Eq. (3.102b) stands for the strain equation for geometric nonlinearity due to stretching 

of the neutral axis. Eq. (3.102c) is equivalent to the curvature displacement relation for 

small deflection in Eq. (3.90). Therefore, for large deflection analysis which results in 

geometric nonlinearity due to curvature, Eq. (3.102a) becomes 

 𝜀𝑥𝑥 = 𝜀𝑥𝑥
0 + 𝑧𝑘 (3.103a) 
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𝜀𝑥𝑥 =

𝜕𝑢𝑥

𝜕𝑥
+

1

2
(
𝜕𝑤

𝑑𝑥
)
2

+ 𝑧𝑐
𝜕2𝑤

𝜕𝑥2
 

 

(3.103b) 

In order to present realistic proportional links, the links are assumed to be of the same 

cross section. Each link is divided into elements of the same length with constant areas. 

The integrations involved in the element equations are carried out in a piecewise fashion 

with areas in each section taken as a constant. 

 

3.2.3 Strain Energy 

The virtual strain energy 𝛹 for the element may be written as  

 
𝛹 = ∬𝜎𝛿𝜀 𝑑𝑥𝑑𝑧 +

1

2
∬𝜏𝑥𝑧𝛾𝑥𝑧 𝑑𝑥𝑑𝑧 

 

(3.104) 

Where 𝜎 is the normal stress, 𝜀 is the normal strain, 𝜏𝑥𝑧 and 𝛾𝑥𝑧 are the shear stress and 

shear strain respectively. 

But, 

 𝜏𝑥𝑧 = 𝐺𝑥𝑧𝛾𝑥𝑧  

(3.105a) 

 
𝛾𝑥𝑧 = (𝛼 +

𝜕𝑤

𝜕𝑥
)
2

 
 

(3.105b) 

Where 𝐺𝑥𝑧 is the shear modulus. Substituting Eq. (3.105) into Eq. (3.104), we have 

 
𝛹 = ∬𝜎𝛿𝜀 𝑑𝑥𝑑𝑧 +

1

2
∬𝐺𝑥𝑧 (𝛼 +

𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥𝑑𝑧 
 

(3.106) 

Taking the variation of Eq. (3.103b), gives 

 
𝛿𝜀𝑥𝑥 =

𝜕𝛿𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑥
+ 𝑧𝑐

𝜕2𝛿𝑤

𝜕𝑥2
 

 

(3.107) 

Substituting Eq. (3.105) into Eq. (3.106) gives 

 
𝛹 = ∬𝜎𝑥𝑥 (

𝜕𝛿𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑥
+ 𝑧𝑐

𝜕2𝛿𝑤

𝜕𝑥2 )𝑑𝑥𝑑𝑧

+
1

2
∬𝐺𝑥𝑧 (𝛼 +

𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥𝑑𝑧 

 

(3.108) 

But,  
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∬𝐺𝑥𝑧𝑑𝑥𝑑𝑧 = 𝐺𝑥𝑧𝐴𝑥𝑧 = 𝑞𝐺𝑥𝑧𝐴𝑧  

(3.109) 

Here, 𝑞 is a constant (for a rectangular section, 𝑞 = 6
5⁄  ; for a circular section, 𝑞 =

37
32⁄ ), 𝐴𝑥𝑧 is the  𝑥 − 𝑧 plane area, 𝐴𝑠 is the shear area and 𝐺𝑥𝑧𝐴𝑠 is the shear stiffness. 

 
𝛹 = ∬𝜎𝑥𝑥 (

𝜕𝛿𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑥
+ 𝑧𝑐

𝜕2𝛿𝑤

𝜕𝑥2 )𝑑𝑥𝑑𝑧

+
1

2
𝑞𝐺𝑥𝑧𝐴𝑠 ∬(𝛼 +

𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥𝑑𝑧 

 

(3.110) 

 

Integrating Eq. (3.110) within the depth of  𝑧 leads to 

 

 

𝛹 = ∫ [𝑁𝑥𝑥 (
𝜕𝛿𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑥
)

𝐿

0

+ (𝑀𝑥𝑥

𝜕2𝛿𝑤

𝜕𝑥2
(1/(1 + (

𝜕𝑤

𝜕𝑤
)
2

)

3/2

))

+
1

2
𝑞𝐺𝑥𝑧𝐴𝑠 ∫ (𝛼 +

𝜕𝑤

𝜕𝑥
)
2

𝑑𝑧

ℎ
2

−
ℎ
2

] 𝑑𝑥 

 

 

 

 

(3.111) 

Where 

 

 
∫𝜎𝑥𝑥𝑑𝑧 = 𝑁𝑥𝑥  

(3.112a) 

 
∫𝜎𝑥𝑥𝑧 = 𝑀𝑥𝑥  

(3.112b) 

𝑁𝑥𝑥 is the axial force and 𝑀𝑥𝑥 is the bending moment in the beam. The Lagrangian 

function 𝐿𝑓 is defined as  

 
𝐿𝑓 = ∑ ∑(𝑇 − 𝛹)𝑟𝑠

𝑛

𝑠=1

𝑘

𝑟=1

 
 

(3.113) 

The limits of the summation is from the first element 𝑠 = 1 of each link to the last 

element 𝑛  of the same link and 𝑟 = 1 of each link of the mechanism to the last link 𝑘 

of the mechanism. Substituting the value for the total kinetic energy,  𝑇 from Eq. (3.100) 

and that of the strain energy density 𝛹 from Eq. (3.111), the Lagrangian can be 

expressed in terms of 𝑢, 𝑣,  𝑤, 𝛼 and 𝜃. 
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3.2.4 Finite Element Formulation   

The Rayleigh-Ritz method is used to approximate both transverse and axial deformation 

variables. Hermite polynomials are used to approximate the transverse displacement 𝑤, 

transverse shear 𝛼 and beam angle 𝜃, while the Lagrange linear interpolation functions 

are used to approximate the axial displacement 𝑢 in order to satisfy the boundary 

conditions of various types of compliant mechanisms easily and to ensure interelement 

compatibility. It should be noted that nodes 1 and 2 are the end nodes. The axial 

deformation 𝑢 with its variation 𝛿𝑢 are approximated by a shape function given by

  

 
𝑢(𝑥,𝑡) = 𝑔𝑢𝑈 = ∑𝑈𝑖(𝑥, 𝑡)𝑁𝑖(𝑥)

2

𝑖=1

 
 

(3.114) 

 𝑁1 = (1 − 𝑥̅) (3.115a) 

 𝑁1 = 𝑥̅ (3.115b) 

Where 𝑁𝑖 (i.e 𝑔𝑢) is the Lagrange interpolation function, 𝑥̅ is the element coordinate 

with the origin at node 1. Let 𝜗𝑖 be the first derivative of the shape function 𝑁𝑖 so that 

the approximation of Eq. (3.114) becomes 

 
𝑢̇(𝑥,𝑡) = 𝑔̇𝑢𝑈 = ∑𝑈𝑖(𝑥, 𝑡)𝜗𝑖(𝑥)

2

𝑖=1

 
 

(3.116) 

Similarly, the transverse deformation 𝑤 with its variation 𝛿𝑤 are approximated by fifth 

degree Hermite polynomials given by 

 
𝑤(𝑥,𝑡) = 𝑔𝑤𝑊 = ∑𝑊𝑖(𝑥, 𝑡)𝜙𝑖(𝑥)

6

𝑖=1

 
 

(3.117) 

Where 

 
𝜙1 = 1 − 10 (

𝑥̅

𝐿
)
3

+ 15(
𝑥̅

𝐿
)
4

− 6(
𝑥̅

𝐿
)
5

 
 

(3.118a) 
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𝜙2 = 𝑥̅ [1 − 6 (

𝑥̅

𝐿
)
2

+ 8(
𝑥̅

𝐿
)
3

− 3(
𝑥̅

𝐿
)
4

] 
 

(3.118b) 

 
𝜙3 =

𝑥̅2

2
[1 − 3

𝑥̅

𝐿
+ 3 (

𝑥̅

𝐿
)
2

− (
𝑥̅

𝐿
)
3

] 
 

(3.118c) 

 
𝜙4 = 10 [(

𝑥̅

𝐿
)
3

− 15(
𝑥̅

𝐿
)
4

+ 6(
𝑥̅

𝐿
)
5

] 
 

(3.118d) 

 
𝜙5 = −𝑥̅ [4 (

𝑥̅

𝐿
)
2

− 7(
𝑥̅

𝐿
)
3

+ 3 (
𝑥̅

𝐿
)
4

] 
 

(3.118e) 

 
𝜙4 =

𝑥̅2

2
[
𝑥̅

𝐿
− 2 (

𝑥̅

𝐿
)
2

+ (
𝑥̅

𝐿
)
3

] 
 

(3.118f) 

The initial transverse displacement is approximated as 

 𝑤(𝑥,𝑡) = 𝑔𝑤𝑊 = ∑ 𝑊𝑗(𝑥, 𝑡)∆𝑗(𝑥)

𝑗=𝑖.4

  

(3.119) 

While the first and second derivatives of the transverse displacement are approximated 

as 

 𝑤̇(𝑥,𝑡) = 𝑔̇̇𝑤𝑊 = ∑ 𝑊𝑗(𝑥, 𝑡)𝛷𝑗(𝑥)

𝑗=2,5

  

(3.120) 

 𝑤̈(𝑥,𝑡) = 𝑔̇̈𝑤𝑊 = ∑ 𝑊𝑗(𝑥, 𝑡)𝛩𝑗(𝑥)

𝑗=3,6

  

(3.121) 

𝛷𝑗 (i.e 𝑔̇𝑤) are the first derivatives of the second and fifth Hermite polynomials; 𝛩𝑗 (i.e 

𝑔̈𝑤) are the second derivatives of the third and sixth Hermite polynomials. For the 

purpose of compatibility, 𝜃 is also approximated by the fifth order polynomial. 

 𝜃(𝑥,𝑡) = 𝑔𝜃𝜃 = ∑ 𝜃𝑗(𝑥, 𝑡)∆𝑗(𝑥)

𝑗=𝑖.4

  

(3.121a) 

 𝜃̇(𝑥,𝑡) = 𝑔̇̇𝜃𝜃 = ∑ 𝜃𝑗(𝑥, 𝑡)𝛷𝑗(𝑥)

𝑗=2,5

  

(3.121b) 

And 𝛼 is approximated by  

 𝛼(𝑥,𝑡) = 𝑔𝛼𝛼 = ∑ 𝛼𝑗(𝑥, 𝑡)∆𝑗(𝑥)

𝑗=𝑖.4

  

(3.122a) 
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 𝛼̇(𝑥,𝑡) = 𝑔̇𝛼𝛼 = ∑ 𝛼𝑗(𝑥, 𝑡)𝛷𝑗(𝑥)

𝑗=2,5

 (3.122b) 

Substituting the approximations from Eqs. (3.114-3.122) into Eq. (3.100), the kinetic 

energy can now be rewritten as 

 
𝑇 =

1

2
∫ ∫ [(𝜌𝐴𝑥𝑥((𝑏 𝑔̇𝜃𝜃 + 𝑥̇ + 𝑔̇𝑢𝑈)2 + (𝑎 𝑔̇𝜃𝜃 + 𝑔̇𝑤𝑊)2)

𝐿

0

ℎ
2

−
ℎ
2

+ 𝜌𝐼𝑧((𝑔̇𝛼𝛼)2 + (𝑔̇𝜃𝜃 + 𝑔̈𝑤𝑊)2 )] 𝑑𝑥𝑑𝑧 

 

(3.123) 

 

Equally, the strain energy density of Eq. (3.111) can be rewritten as 

 

 

𝛹 = ∫ [𝑁𝑥𝑥(𝑔̇𝑢𝑈 + (𝑔̇𝑤𝑊)2) + (𝑀𝑥𝑥𝑔̈𝑤𝑊 (1/(1 + (𝑔̇𝑤𝑊)2)
3

2⁄  ))
𝐿

0

+
1

2
𝑞𝐺𝑥𝑧𝐴𝑠 ∫ (𝑔𝛼𝛼 + 𝑔̇𝑤𝑊)2𝑑𝑧

ℎ
2

−
ℎ
2

] 𝑑𝑥 

 

 

 

(3.124) 

   

The transformation of coordinates is now introduced to change from moving 

coordinates system associated with the element to global coordinates. Only the nodal 

displacements 𝑈𝑖 and 𝑊𝑖 need to be transformed. The other coordinates are angles or 

derivative of angles which are not directional on the xz  coordinate system used. The 

corresponding transformation is given as 

 

[
 
 
 
 
 
 
 
 
 
 
 
𝑈1

𝑊1

𝑊2

𝑊3

𝑈2

𝑊4

𝑊5

𝑊6]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
𝐶𝑜𝑠 𝜃 𝑆𝑖𝑛 𝜃 0 0 0 0 0 0

−𝑆𝑖𝑛 𝜃 𝐶𝑜𝑠 𝜃 0 0 0 0 0 0

0 0 𝐶𝑜𝑠 𝜃 𝑆𝑖𝑛 𝜃 0 0 0 0

0 0 −𝑆𝑖𝑛 𝜃 𝐶𝑜𝑠 𝜃 0 0 0 0

0 0 0 0 𝐶𝑜𝑠 𝜃 𝑆𝑖𝑛 𝜃 0 0

0 0 0 0 −𝑆𝑖𝑛 𝜃 𝐶𝑜𝑠 𝜃 0 0

0 0 0 0 0 0 𝐶𝑜𝑠 𝜃 𝑆𝑖𝑛 𝜃

0 0 0 0 0 0 −𝑆𝑖𝑛 𝜃 𝐶𝑜𝑠 𝜃]
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑈1

𝑊̅1

𝑊̅2

𝑊̅3

𝑈2

𝑊̅4

𝑊̅5

𝑊̅6]
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

   

(3.125) 

 

 [𝑈1,  𝑊1,  𝑊2,𝑊3 , 𝑈2 ,𝑊4 ,𝑊5 ,𝑊6]
𝑇

= [𝑇𝑓][𝑈̅̅1,  𝑊̅1,  𝑊̅2, 𝑊̅3 , 𝑈̅2 , 𝑊̅4 , 𝑊̅5 , 𝑊̅6]
𝑇 

 

(3.126) 

 

𝑇𝑓 is the transformation matrix. 𝑈̅̅1,  𝑊̅1,  𝑊̅2, 𝑊̅3 , 𝑈̅2 , 𝑊̅4 , 𝑊̅5 , 𝑊̅6 are the nodal 

displacements in global coordinate. Substituting the expression from Eqs. (3.123) and 
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(3.124) into the Eq. (2.113), the equation for the global displacement vectors for the 

system is given as 

 
𝐿𝑓 = ∑ ∑[

1

2
∫ ∫ [(𝜌𝐴𝑥𝑥((𝑏 𝑔̇𝜃𝜃 + 𝑥̇ + 𝑔̇𝑢𝑈)2

𝐿

0

ℎ
2

−
ℎ
2

𝑛

𝑠=1

𝑘

𝑟=1

+ (𝑎 𝑔̇𝜃𝜃 + 𝑔̇𝑤𝑊)2)

+ 𝜌𝐼𝑧((𝑔̇𝛼𝛼)2 + (𝑔̇𝜃𝜃 + 𝑔̈𝑤𝑊)2 )] 𝑑𝑥𝑑𝑧

− ∫ [𝑁𝑥𝑥(𝑔̇𝑢𝑈 + (𝑔̇𝑤𝑊)2)
𝐿

0

+ (𝑀𝑥𝑥𝑔̈𝑤𝑊 (1/(1 + (𝑔̇𝑤𝑊)2)
3

2⁄  ))

+
1

2
𝑞𝐺𝑥𝑧𝐴𝑠 ∫ (𝑔𝛼𝛼 + 𝑔̇𝑤𝑊)2𝑑𝑧

ℎ
2

−
ℎ
2

] 𝑑𝑥]

𝑟𝑠

 

 

 

 

 

 

 

 

(3.127) 

The global coordinates for the system are given by 

 

 𝑞 = [𝑈̅̅1,  𝑊̅1,  𝑊̅2, 𝑊̅3 , 𝜃1, 𝛼1, 𝑈̅2 , 𝑊̅4 , 𝑊̅5 , 𝑊̅6 , 𝜃2, 𝛼2] (3.128) 

Differentiating the Lagrangian with respect to the element coordinates gives the 

Lagrange equation of motion. 

 𝑑

𝑑𝑡
 (

𝜕𝐿𝑓

𝜕𝑞̇
) −

𝜕𝐿𝑓

𝜕𝑞
= 0 

(3.129) 

The operation carried out in Eq. (3.129) results in a system of nonlinear element 

differential equations. Assembling the element matrices for particular compliant 

mechanism being solved results in the global system of equations given as 

 [𝑀]{𝑄,𝑡𝑡} + [𝐶]{𝑄,𝑡} + [𝐾]{𝑄} = {𝐹} (3.130) 

Where 

 [𝐾] = [𝐾𝑙] + [𝐾𝑛𝑙] (3.131) 

𝑄 and 𝐹 are the displacement and force vectors respectively. The 𝑀, 𝐶, 𝐾𝑙 and 𝐾𝑛𝑙, 

matrices are all functions of time 𝑡. The 𝐶 matrix results from the kinetic energy of the 

system. The matrix 𝐾𝑙 is the linear portion of the stiffness matrix. The matrix 𝐾𝑛𝑙 is the 

nonlinear portion of the stiffness matrix. Eq. (3.130) give a system of nonlinear 
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equations that will be solved iteratively for a given compliant mechanism problem. The 

Newton - Raphson iteration method will be employed for the iteration process. 

 

3.3 Fatigue Failure Prediction Model 

The strain energy density of nearly incompressible material models (Eq. 3.15) could be 

expressed in terms of the principal stretches, 𝜆𝑗 as 

 
𝛹(𝜆1, 𝜆2, 𝜆3) = ∑

𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝜆̅1

𝛼𝑝 + 𝜆̅2

𝛼𝑝 + 𝜆̅3

𝛼𝑝
) + ∑ 𝛽(𝐽 − 1)2

𝑛

𝑝=1

 
 

(3.132) 

Where  

 
𝜇𝑝 =

1

2
∑𝜇𝑖

𝑛

𝑖=1

 
 

(3.133a) 

 
𝛽 =

𝑘𝑖

2
 

(3.133b) 

The principal components of the Cauchy stress are given by (Ogden, 1997) 

 
𝜎𝑖 =

𝜆𝑖

𝜆1𝜆2𝜆3

𝜕𝛹

𝜕𝜆𝑖
                       𝑖 = 1,2,3 

 

(3.134) 

The strain energy potential can be written as either function of the principal stretch 

ratios or as a function of the invariants of the strain tensor 𝑪, 𝐼1, 𝐼2, 𝐼3. The invariants of 

𝑪 are defined as 

 𝐼1 = 𝑡𝑟𝑪 = 𝑪 ∶ 𝑰 (3.135a) 

 𝐼2 = 𝑡𝑟𝑪𝑪 (3.135b) 

 𝐼3 = 𝑑𝑒𝑡 𝐶 = 𝐽2 (3.135c) 

In terms of the principal stretch ratio, the invariants are written as  

 𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 (3.136a) 

 𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆3
2𝜆1

2 (3.136b) 

 𝐼3 = 𝜆1
2𝜆2

2𝜆3
2 (3.136c) 

The invariants could be expressed in terms of the deviatoric principal stretches as 
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𝐼1̅ = 𝐽−

2
3𝐼1 

(3.137a) 

 
𝐼2̅ = 𝐽−

4
3𝐼2 

(3.137b) 

 𝐼3̅ = 𝐽2 (3.137c) 

Substituting Eq. (3.136a) and Eq. (3.137a) into Eq. (3.132) gives 

 
𝛹 = ∑

𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝐽−
2

3⁄ (𝜆1

𝛼𝑝 + 𝜆2

𝛼𝑝 + 𝜆3

𝛼𝑝) − 3) + ∑ 𝛽(𝐽 − 1)2

𝑛

𝑝=1

 
 

(3.138) 

Using Eq. (3.134), Eq. (3.138) becomes 

 
𝜆𝑖

𝜕𝐽

𝜕𝜆𝑖
= ∑

𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(−
2

3
𝐽−5⁄3𝜆𝑖

𝜕𝐽

𝜕𝜆𝑖
(𝜆1

𝛼𝑝 + 𝜆2

𝛼𝑝 + 𝜆3

𝛼𝑝
) + 𝐽−2⁄3𝛼𝑝𝜆𝑖

𝛼𝑝)

+ ∑ 2𝛽(𝐽 − 1)𝜆𝑖

𝜕𝐽

𝜕𝜆𝑖

𝑛

𝑝=1

 

 

 

 

(3.139) 

Since  

 𝐽 = 𝜆1
2𝜆2

2𝜆3
2 (3.140b) 

we have 

 
𝜆𝑖

𝜕𝐽

𝜕𝜆𝑖
= 𝜆1

2𝜆2
2𝜆3

2 = 𝐽 
(3.140b) 

Hence 

 
𝜆𝑖

𝜕𝛹

𝜕𝜆𝑖
= ∑

𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

𝐽−2⁄3 (𝛼𝑝𝜆
𝑖

𝛼𝑝 −
2

3
(𝜆1

𝛼𝑝 + 𝜆2

𝛼𝑝 + 𝜆3

𝛼𝑝))

+ ∑ 2𝛽𝐽(𝐽 − 1)

𝑛

𝑝=1

 

 

 

 

(3.141) 

 

Therefore the principal Cauchy stresses are given as 

 
𝜎𝑖 = ∑

𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

𝐽−5⁄3 (𝛼𝑝𝜆
𝑖

𝛼𝑝 −
2

3
(𝜆1

𝛼𝑝 + 𝜆2

𝛼𝑝 + 𝜆3

𝛼𝑝)) + ∑ 2𝛽𝐽(𝐽 − 1)

𝑛

𝑝=1

 
 

(3.140b) 

Then, the difference between the principal stresses become 

 

 
𝜎1 − 𝜎3 = ∑ 𝜇𝑝

𝑛

𝑝=1

𝐽−5⁄3(𝜆1

𝛼𝑝 − 𝜆3

𝛼𝑝) 
 

(3.143a) 
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𝜎2 − 𝜎3 = ∑ 𝜇𝑝

𝑛

𝑝=1

𝐽−5⁄3(𝜆2

𝛼𝑝 − 𝜆3

𝛼𝑝
) 

 

(3.143b) 

 
𝜎1 − 𝜎2 = ∑ 𝜇𝑝

𝑛

𝑝=1

𝐽−5⁄3(𝜆1

𝛼𝑝 − 𝜆2

𝛼𝑝) 
 

(3.143c) 

Since force is applied in one direction in most compliant mechanisms, we will consider 

a mechanism undergoing uniaxial stress state. The principal stretches become 

 𝜆1 = 𝜆 (3.144a) 

 
𝜆2 = 𝜆3 = √𝐽

𝜆⁄  
 

(3.144b) 

𝜆 s the stretch in the loading direction ; 𝜆2 
and 𝜆3 are the principal stretches on plane 

perpendicular to loading direction. Substitution Eq. (3.144) into Eqs. (3.143a,b,c) gives 

  
𝜎1 − 𝜎3 = 𝜎1 − 𝜎2 = ∑ 𝜇𝑝

𝑛

𝑝=1

𝐽−5⁄3 (𝜆𝛼𝑝 − (
𝐽

𝜆
)
𝛼𝑝⁄2

) 
 

(3.145a) 

 𝜎2 − 𝜎3 = 0 (3.145b) 

The effective stress is given by the equation tensor 

 
𝜎𝑒 = (

1

2
(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎1 − 𝜎3)

2)

1
2⁄

 

= (
3

2
𝑆𝑖𝑗𝑆𝑖𝑗)

1⁄2

 

 

 

 

(3.146) 

Where 𝑆𝑖𝑗 are the components of the deviatoric tensor 𝝈𝑑𝑒𝑣 

 
𝝈𝑑𝑒𝑣 = 𝝈 −

1

3
(𝑡𝑟𝝈)𝑰 

  

(3.147) 

Substituting Eqs. (3.145a,b) into Eq. (3.146) gives 

 
𝜎𝑒 = ∑ 𝜇𝑝

𝑛

𝑝=1

𝐽−5⁄3 (𝜆𝛼𝑝 − (
𝐽

𝜆
)
𝛼𝑝⁄2

) 
 

(3.148) 

The stretch ratio in the loading direction is given by (Haslach and Armstrong, 2004) 

 𝜆 = 1 + 𝜀 (3.149) 

𝜀 is the nominal strain. Substituting Eq. (3.149) into Eq. (3.148) gives 
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𝜎𝑒 = ∑ 𝜇𝑝

𝑛

𝑝=1

𝐽−5⁄3 ((1 + 𝜀)𝛼𝑝 − (
𝐽

(1 + 𝜀)
)
𝛼𝑝⁄2

) 
 

(3.150) 

Equally, substituting Eq. (3.144) into Eq. (3.138), the strain energy density can be 

rewritten in the forms 

 

𝛹 = ∑
𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝐽−
2

3⁄ ((𝜆)𝛼𝑝 − (
𝐽

𝜆
)

𝛼𝑝
2⁄

) − 3) + ∑ 𝛽(𝐽 − 1)2

𝑛

𝑝=1

 

= ∑
𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝐽−2⁄3 ((1 + 𝜀)𝛼𝑝 − (
𝐽

(1 + 𝜀)
)
𝛼𝑝⁄2

) − 3)

+ ∑ 𝛽(𝐽 − 1)2

𝑛

𝑝=1

 

 

 

 

 

(3.151a) 

 

 

 

3.3.1 Continuum Damage Mechanics Model 

Material damage usually induces the stiffness change of the material. Therefore, the 

damage state can be characterized by the change of elastic constants. Consider a 

representative volume element (RVE) of an anisotropic material with stiffness [𝐸] is 

damaged under a system of loading {𝜎𝑒}. The stiffness matrix of the damaged material 

is [𝐸𝑑]. The damage matrix [𝐷] is defined as (Tang and Lee, 1995) 

 [𝐷] = [𝐼] − [𝐸𝑑][𝐸]−1 (3.152) 

Where [𝐼] is the identity matrix. The strain {𝜀} is given as 

 {𝜀} = [𝐼] − [𝐸𝑑]1{𝜎𝑒} 

= [𝐸]−1[[𝐼] − [𝐷]]
−1

{𝜎𝑒} 

= [𝐸]−1{𝜎̅𝑒} 

 

 

(3.153) 

Where 

 {𝜎̅𝑒} = [[𝐼] − [𝐷]]
−1

{𝜎𝑒} (3.154) 

The matrix {𝜎̅𝑒} is defined as the effective stress matrix after material damage. Hence, 

the damage effect matrix [𝑀] is  
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 [𝑀] = [[𝐼] − [𝐷]]
−1

 (3.155) 

   

3.3.2 Isotropic Model 

Consider a damaged body as shown in Fig. 3.5, in which a representative volume 

element is isolated. Damaged variable is physically defined by the surface density of 

microcracks and intersections of micro-voids lying on a plane cutting RVE of cross 

section 𝛿𝐴 (Lemaitre and Desmorat, 2005).   

 
Fig. 3.5: Transformation 𝝓(𝒕) from the (a) initial undamaged configuration to 

(b) the damaged configuration 

 

Damaged variable 𝐷(𝑛̅), for the plane defined by normal n  is 

 
𝐷(𝑛̅) =

𝛿𝐴𝐷

𝛿𝐴
   ,         0 ≤  𝐷(𝑛̅) ≤ 1 

(3.156) 

Where 𝛿𝐴𝐷  is the effective area of the intersection of all micro-cavities or microcracks 

that lie in the initial area 𝛿𝐴 at time 𝑡. An isotropic damage variable is equally 

distributed in all directions defined as  

 
𝐷 =

𝛿𝐴𝐷

𝛿𝐴
 

(3.157) 

Eq. (3.157) is the percentage of the damaged area to initial area. 𝐷 is a scalar. Isotropic 

damage is assumed in this concept of continuum damage mechanics. The damage 
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parameter can be obtained by reducing the rank of matrix to zero. This reduces Eq. 

(3.152) to  

 𝐷 = 1 − 𝐸𝑑 ∙ 𝐸−1 (3.157) 

The effective stress after material damage, 𝜎̅𝑒 and damage strain energy release rate are 

related by (Lemaitre, 1985) 

 𝜎̅𝑒 = 𝑀 ∙ 𝜎𝑒 =
𝜎𝑒

1 − 𝐷
 (3.159) 

The nominal stress – strain relation of a damage material is the same in form as that of 

an undamaged material (Sidoroff, 1981). This means that 

 𝜎̅𝑒 = 𝜎𝑒 (3.160) 

so that 

 𝜎𝑒

1 − 𝐷
= ∑ 𝜇𝑝

𝑛

𝑝=1

𝐽−
5
3(𝜆𝛼𝑝 − 𝐽𝛼𝑝⁄2𝜆−𝛼𝑝⁄2) 

 

(3.161) 

The constitutive equation for damage evolution is given by (Lemaitre and Desmorat, 

2005)   

 
𝐷̇ = −

𝜕𝛼0

𝜕𝑌
 

(3.162) 

𝛼0 is the dissipation potential; 𝑌 is the damage strain energy release rate; 𝐷̇ is the 

damage growth rate. The dissipation potential is assumed as (Jiang, 1995) 

 
𝛼0 =

𝑠0

𝑞0 + 1
(−

𝑌

𝑠0
)
𝑞0+1

 
 

(3.163) 

𝑞0 and 𝑠0 are material parameters determined by the experimental fatigue life as a 

function of the strain range. But the strain energy of a damaged and undamaged material 

is the same (Tang and Lee, 1995). From the CDM theory, the damaged strain energy 

should be a function of the effective nominal normal stress of the damaged 

configuration. Hence, in the uniaxial stress state, the damaged strain energy released 

rate 𝑌 is defined as  
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−𝑌 =

𝜕𝛹

𝜕𝐷
=

𝜕𝛹(𝜎̅𝑒)

𝜕𝐷
 

(3.164) 

Substitution Eq. (3.151) into Eq. (3.164), we have 

 

 
−𝑌 =

𝜕𝛹(𝜎̅𝑒)

𝜕𝐷
=

𝜕𝛹

𝜕𝜆

𝜕𝜆(𝜎̅𝑒)

𝜕𝐷
 

= ∑ 𝜇𝑝

𝑛

𝑝=1

𝐽−2⁄3 (𝛼𝑝𝜆𝛼𝑝−1 − 𝛼𝑝 𝐽𝛼𝑝⁄2𝜆−(𝛼𝑝⁄2−1))
𝜕𝜆(𝜎̅𝑒)

𝜕𝐷
 

 

(3.165) 

 

Taking the partial derivative of Eq. (3.161) with respect to 𝐷, gives 

 

 𝜕𝜆(𝜎̅𝑒)

𝜕𝐷
= ∑

1

𝜇𝑝

𝑛

𝑝=1

𝜎𝑒

(1 − 𝐷)2 [𝐽−
5

3⁄ (𝛼𝑝𝜆𝛼𝑝−1 +
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ 𝜆

−(
𝛼𝑝

2⁄ −1)
)]

−1

 
 

(3.166) 

Substitution Eq. (3.166) into Eq. (3.165), we have 

 
−𝑌 = ∑

1

𝛼𝑝

𝑛

𝑝=1

𝜎𝑒

(1 − 𝐷)2
𝐽 [(𝛼𝑝𝜆𝛼𝑝−1

− 𝛼𝑝 𝐽
𝛼𝑝

2⁄ 𝜆
−(

𝛼𝑝
2⁄ +1)

) (𝛼𝑝𝜆𝛼𝑝−1

+
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ 𝜆

−(
𝛼𝑝

2⁄ +1)
)
−1

] 

 

 

 

 

(3.167) 

 

Substitution Eq. (3.161) into Eq. (3.167) gives 

 

 

−𝑌 = ∑
𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

[
(𝜆𝛼𝑝 − 𝐽

𝛼𝑝
2⁄ 𝜆−

𝛼𝑝
2⁄ )

1 − 𝐷
𝐽−

2
3⁄ (𝛼𝑝𝜆𝛼𝑝−1

− 𝛼𝑝 𝐽
𝛼𝑝

2⁄ 𝜆
−(

𝛼𝑝
2⁄ +1)

) (𝛼𝑝𝜆𝛼𝑝−1

+
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ 𝜆

−(
𝛼𝑝

2⁄ +1)
)
−1

] 

 

 

 

(3.168) 

 

Using Eqs. (3.162), (3.163), and (3.168) we have 

 

 

 

𝐷̇ = ∑
𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝑠0
−1) [

(𝜆𝛼𝑝 − 𝐽
𝛼𝑝

2⁄ 𝜆−
𝛼𝑝

2⁄ )

1 − 𝐷
𝐽−

2
3⁄ (𝛼𝑝𝜆𝛼𝑝−1

− 𝛼𝑝 𝐽
𝛼𝑝

2⁄ 𝜆
−(

𝛼𝑝
2⁄ +1)

) (𝛼𝑝𝜆𝛼𝑝−1

+
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ 𝜆

−(
𝛼𝑝

2⁄ +1)
)
−1

]

𝑞0

 

 

 

 

 

 

(3.169) 
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Under a cyclic loading condition, the damage will accumulate with the number of cycles 

and the damage evolution will depend on the strain amplitude. The time rate change of 

damage variable 𝐷̇ can be represented in terms of the evolution of 𝐷 with respect to the 

number of cycles. Based on this consideration, the principal stretch amplitude ∆𝜆 is 

used to replace 𝜆, the fatigue damage evolution per cycle is then expressed as 

 

 
𝑑𝑁

𝑑𝑁
= ∑

𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝑠0
−1) [

(∆𝜆𝛼𝑝 − 𝐽
𝛼𝑝

2⁄ ∆𝜆−
𝛼𝑝

2⁄ )

1 − 𝐷
𝐽−

2
3⁄ (𝛼𝑝∆𝜆𝛼𝑝−1

− 𝛼𝑝 𝐽
𝛼𝑝

2⁄ ∆𝜆
−(

𝛼𝑝
2⁄ +1)

) (𝛼𝑝∆𝜆𝛼𝑝−1

+
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ ∆𝜆

−(
𝛼𝑝

2⁄ +1)
)
−1

]

𝑞0

 

 

 

 

 

 

(3.170) 

where ∆𝜆 is the principal stretch amplitude and 𝑁 is the number of cycles. Assuming 

that the damage variable 𝐷 is zero at the beginning of the cyclic loading, that is, 𝐷 = 0  

when 𝑁 = 0, then the damage value at any cycle can be determined by integrating Eq. 

(3.170), which gives 

 
∫ (1 − 𝐷)𝑞0

𝐷

0

𝑑𝑁

= ∫ ∑
𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝑠0
−1)𝐽−

2
3⁄ [[(∆𝜆𝛼𝑝

𝑁

0

− 𝐽
𝛼𝑝

2⁄ ∆𝜆−
𝛼𝑝

2⁄ ) (𝛼𝑝∆𝜆𝛼𝑝−1

− 𝛼𝑝 𝐽
𝛼𝑝

2⁄ ∆𝜆
−(

𝛼𝑝
2⁄ +1)

) (𝛼𝑝∆𝜆𝛼𝑝−1

+
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ ∆𝜆

−(
𝛼𝑝

2⁄ +1)
)
−1

]

𝑞0

] 𝑑𝑁 

 

 

 

 

 

(3.171) 

 

The relation between the damage variable 𝐷 and number of cycles 𝑁 could be deduced 

as  
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 [1 − (1 − 𝐷)𝑞0+1

= (𝑞0

+ 1) [∑
𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝑠0
−1)𝐽−

2
3⁄ [(∆𝜆𝛼𝑝

− 𝐽
𝛼𝑝

2⁄ ∆𝜆−
𝛼𝑝

2⁄ ) (𝛼𝑝∆𝜆𝛼𝑝−1

− 𝛼𝑝 𝐽
𝛼𝑝

2⁄ ∆𝜆
−(

𝛼𝑝
2⁄ +1)

) (𝛼𝑝∆𝜆𝛼𝑝−1

+
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ ∆𝜆

−(
𝛼𝑝

2⁄ +1)
)
−1

]

𝑞0

]𝑁 

 

 

 

 

 

(3.172) 

The damage variable is expressed as the ratio of the number of cycles 𝑁 to the fatigue 

life 𝑁𝑓 as (Jiang, 1995) 

 
𝐷 =

𝑁

𝑁𝑓
 

 

(3.173) 

Eq. (3.173) indicates that the damage is linearly distributed to each cycle during the 

loading. Therefore, if a material has been subjected to cyclic loading, the damage is 

 
𝐷 =

𝑁

(𝑁𝑓)𝑖

 
 

(3.174) 

and when the fatigue rupture occurs, we have 

 𝐷 = 𝐷𝑐 = 1 (3.175) 

𝐷𝑐 is the critical value of the damage variable. Eqs. (3.173) - (3.175) show that at the 

moment of failure,  

 𝑁 = 𝑁𝑓 (3.176) 

and the fatigue life 𝑁𝑓 is expressed as  

 𝑁𝑓

= (𝑞0

+ 1)−1

[
 
 
 
∑

𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝑠0
−1)𝐽−

2
3⁄ [

(∆𝜆𝛼𝑝 − 𝐽
𝛼𝑝

2⁄ ∆𝜆−
𝛼𝑝

2⁄ )

1 − 𝐷
(𝛼𝑝∆𝜆𝛼𝑝−1

− 𝛼𝑝 𝐽
𝛼𝑝

2⁄ ∆𝜆
−(

𝛼𝑝
2⁄ +1)

)(𝛼𝑝∆𝜆𝛼𝑝−1 +
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ ∆𝜆

−(
𝛼𝑝

2⁄ +1)
)
−1

]

]
 
 
 
−𝑞0

 

 

 

 

 

 

(3.177) 
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Using Eq. (3.149), the principal stretch amplitude, ∆𝜆 and the nominal strain amplitude, 

∆𝜀 are related as  

 ∆𝜆 = 1 + ∆𝜀 (3.178) 

Substitution Eq. (3.178) into Eq. (3.177), the formula for the fatigue life is expressed 

as a function of the nominal strain amplitude for a compliant mechanism under large 

deformation and cyclic loading. 

 𝑁𝑓

= (𝑞0

+ 1)−1

[
 
 
 
∑

𝜇𝑝

𝛼𝑝

𝑛

𝑝=1

(𝑠0
−1)𝐽−

2
3⁄ [

((1 + ∆𝜀)𝛼𝑝 − 𝐽
𝛼𝑝

2⁄ (1 + ∆𝜀)−
𝛼𝑝

2⁄ )

1 − 𝐷
(𝛼𝑝(1

+ ∆𝜀)𝛼𝑝−1

− 𝛼𝑝 𝐽
𝛼𝑝

2⁄ (1 + ∆𝜀)
−(

𝛼𝑝
2⁄ +1)

)(𝛼𝑝(1 + ∆𝜀)𝛼𝑝−1

+
𝛼𝑝

2
 𝐽

𝛼𝑝
2⁄ (1 + ∆𝜀)

−(
𝛼𝑝

2⁄ +1)
)
−1

]

]
 
 
 
−𝑞0

 

 

 

 

 

 

 

 

(3.179) 

If 𝑛 = 1; 𝛼 = 2 and 𝐽 = 1, Eq. (3.179) reduces to the fatigue life 𝑁𝑓 for a Neo-Hookean 

incompressible model  

 
𝑁𝑓 = (𝑞0 + 1)−1 [

𝜇𝑝

𝛼𝑝

(𝑠0
−1)[[[(1 + ∆𝜀)2 − (1 + ∆𝜀)−1]2[(1 + ∆𝜀)

− (1 + ∆𝜀)−2][2(1 + ∆𝜀) + (1 + ∆𝜀)−2]−1]]

−𝑞0

 

 

 

 

 

(3.180) 

Based on the experimental results and curve fitting, 𝑞0 and 𝑠0 are obtained as 5.54 and 

6.83 𝑀𝑃𝑎 respectively for LDPP and 7.33 and  7.29 𝑀𝑃𝑎 for LDPE. 

 

3.4 Impact – Contact Analysis of Compliant Mechanisms 

Impact is defined as the process involved in the collision of two or more objects. 

Common terminology limits the phrase ‘impact’ to collisions in which the mass effect 

of both impacting bodies must be taken into account, excluding case of ‘impulsive 

loading’ where one of striking objects does not possess the characteristics of a solid 
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(Flores et al., 2008). Compared to usual analysis problems, impact-contact problems 

are extremely difficult to solve because of strong nonlinearities. Impact-contact can 

occur in static or dynamic conditions. In static analysis the inertia effect is negligible. 

Dynamic contact occurs when the inertia effect is important and all solution variables 

are time-dependent which are determined only when both boundary conditions and 

initial conditions are specified. Dynamic contact when the duration time of contact is 

very small is called impact-contact. An example of impact-contact is the case of a Flex-

Run being struck onto the ground surface by an athlete. In the design of such 

mechanisms where strength, durability, precision and reliability are required, it is 

important to predict whether these products will break, or partially break, when they 

are struck.  

 

Systems subjected to several impact loadings are vulnerable to failure due to damage. 

Such failure could be catastrophic if it is a mission critical system like the Flex-Run use 

by amputated athletes. This section investigates the dynamic response characteristics of 

a compliant system impacting on a surface. The dynamic impact-contact governing 

equations for both the target and impactor are derived based on the updated Lagrangian 

approach. 

 

3.4.1  Formulation of impact-contact model  

In studying the impact dynamics, a complete model is one that fully accounts for the 

dynamic behaviour of the structure, the contact behaviour, and the dynamics of the 

projectile. The general formulation is illustrated with reference to contact between two 

bodies as shown in Fig. 3.6  
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Fig. 3.6: Continuum Model of Contact and Target Bodies 

 

The fixed body is the target 𝑇, and the other a contactor 𝐶  with current domains 𝛺0
𝐶 and 

𝛺0
𝑇 and boundaries 𝛤𝑇 and 𝛤𝐶, respectively,  and common contact zone 𝛤𝑐. 𝑈𝑛

𝐶 and 𝑈𝑛
𝑇 

are the displacement of each body along their common opposite normal 𝑛𝐶 and 𝑛𝑇. 

At each point,  

 𝑛𝑇 = −𝑛𝐶 (3.181) 

Before the contact,  

 𝛤𝑢
𝐶 ∪ 𝛤𝑡

𝐶 = 𝛤𝐶  ;     𝛤𝑢
𝐶 ∩ 𝛤𝑡

𝐶 = { } 

 

(3.182) 

 𝛤𝑢
𝑇 ∪ 𝛤𝑡

𝑇 = 𝛤𝑇 ;     𝛤𝑢
𝑇 ∩ 𝛤𝑡

𝑇 = { } (3.183) 

Subscripts 𝑢 and 𝑡 stand for boundaries with prescribed displacements and tractions 

respectively while superscripts 𝐶 and 𝑇 represents the contactor and target respectively. 

After contact and as long as their normal reaction is compression, we have 

 𝛤𝐶 ∩ 𝛤𝑇 = 𝛤𝑐  ;         𝛺0
𝐶 ∩ 𝛺0

𝑇 = { } (3.184) 

The boundary condition compatibility or impenetration equation is give as 

 𝑈𝑢
𝐶(𝑥, 𝑦, 𝑧) = 𝑈𝑢

𝑇(𝑥, 𝑦, 𝑧)     ,               (𝑥, 𝑦, 𝑧) ∈ 𝛤𝑐 (3.185) 

(𝑥, 𝑦, 𝑧) is a space point on contact zone 𝛤𝑐 which satisfy the constrain 

 𝑈𝑢
𝑇 − 𝑈𝑢

𝑇 ≤ 0                   𝑜𝑛           𝛤𝑐  (3.186) 
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The momentum equation and the natural boundary condition are given respectively as 

Eqs. (3.187) and (3.188)  

 𝜎𝑖𝑗,𝑗 + 𝜌𝑏𝑖 = 𝜌𝑈̈𝑖                𝑖𝑛                𝛺0
𝐶    𝑎𝑛𝑑  𝛺0

𝑇   (3.187) 

 𝜎𝑖𝑗𝑛𝑖 = 𝑡𝑗                     𝑖𝑛                 𝛤𝑡
𝐶    𝑎𝑛𝑑  𝛤𝑡

𝑇   (3.188) 

𝜎𝑖𝑗, 𝜌, 𝑏𝑖, 𝑡𝑗, 𝑢𝑖 and 𝑛𝑖 are Cauchy stress tensor, body force, traction, displacement 

vector, and normal vector components respectively. 𝛺0
𝐶 and 𝛺0

𝑇 are the current domain 

of the contactor 𝐶  and the target 𝑇. The physical constraint of contact – impact with no 

penetration is given as 

 𝑔 ≤ 0   ,        𝑔 = 𝑈𝑢
𝐶 − 𝑈𝑢

𝑇 + 𝐺         𝑖𝑛             𝛤𝑐  (3.189) 

𝐺 and g are the initial and current gap dimension functions respectively. 

 

3.4.2 Forces on the Contact Surface 

The normal forces on both the target and the contactor surface are defined using the 

unit normal of the target surface, 

 𝐹𝑛
𝑇 = (𝑡𝑇)𝑛𝑇         ;         𝐹𝑛

𝐶 = (𝑡𝐶)𝑛𝐶      (3.190) 

For equilibrium, the sum of the normal forces must be zero. Thus, 

 𝐹𝑛
𝑇 + 𝐹𝑛

𝐶 = 0     (3.191) 

 𝐹𝑛 ≡ 𝐹𝑛
𝑇 = −𝐹𝑛

𝐶 ≤ 0     (3.192) 

 

3.4.3 Principle of Virtual Work 

Applying the principle of virtual work for the bodies in Fig. 3.6, Eqs. (3.187), (3.188) 

and (3.189) could be coupled as 

 
∫𝑆𝑖𝑗𝛿𝐸𝑖𝑗𝑑𝛺0

𝛺0

+ ∫𝜌𝑈̈𝑖𝛿𝑈𝑖𝑑𝛺0

𝛺0

+ ∫𝜏𝑛𝛿(𝑈𝑛
𝐶 − 𝑈𝑛

𝐶 + 𝐺)𝑑𝛤

𝛤𝑐

= ∫𝜌𝑏𝑖𝛿𝑈𝑖𝑑𝛺0

𝛺0

+ ∫𝑡𝑖𝛿𝑈𝑖𝑑𝛤

𝛤𝑡

 

 

(3.193) 
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Where 

 𝛤𝑡 = 𝛤𝑡
𝐶 ∪ 𝛤𝑡

𝑇 = 𝛤𝑐         ;         𝛺0
𝐶 ∪ 𝛺0

𝑇 (3.194) 

𝜏𝑛 is the Lagrangian multipliers; 𝑺 and 𝑬 are conjugate stress and strain with reference 

to the derivative of displacement vector 𝑈𝑖; 𝛿 is any infinitesimal variation which is 

consistent with displacement boundary conditions. Using a penalty proportion 

parameter 𝛼𝑛, we have 

 𝜏𝑛 = 𝛼𝑛𝑔       ;         𝜏𝑛 = 𝛼𝑛(𝑈𝑛
𝐶 − 𝑈𝑛

𝑇 + 𝐺) (3.195) 

Eq. (3.195) violates the impenetration condition. Also large value of 𝛼𝑛 will lead to 

numerical errors. Farahani et al. (2000) proposed a method where the contactor and 

target are considered as a united body. The contact interaction bodies are now as 

internal forces of the whole body, and the work of traction forces is unnecessary. 

Therefore, Eq. (3.193) reduces to the form 

 
∫ 𝑆𝑖𝑗𝛿𝐸𝑖𝑗𝑑𝛺0

𝛺0

+ ∫𝜌𝑈̈𝑖𝛿𝑈𝑖𝑑𝛺0

𝛺0

= ∫𝜌𝑏𝑖𝛿𝑈𝑖𝑑𝛺0

𝛺0

+ ∫𝑡𝑖𝛿𝑈𝑖𝑑𝛤

𝛤𝑡

 (3.196) 

 

3.4.4 Finite Element Formulation 

For the purpose of studying the dynamic impact-contact problem with hyperelastic 

model, the nonlinear relationship between strain and displacement cannot be ignored. 

The Lagrange strain tensor of Eq. (3.8) could be decoupled into the well-known linear 

part 𝑫𝐸𝒖  and the nonlinear part 𝑬𝑛𝑙(𝒖). 

 𝑬 = [𝑫𝐸 + 𝑬𝑛𝑙(𝒖)]𝒖 = 𝑬𝑙 + 𝑬𝑛𝑙 (3.197) 

𝑫𝐸𝒖 and 𝑬𝑛𝑙(𝒖) are defined as follows (summation over 𝑘 = 1, 2, 3). 
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𝑫𝐸𝒖 = 𝑬𝑙 =

[
 
 
 
 
 
 
 
 

𝑢1,1

𝑢2,2

𝑢3,3

𝑢1,2 + 𝑢2,1

𝑢2,3 + 𝑢3,2

𝑢1,3 + 𝑢3,1]
 
 
 
 
 
 
 
 

 

 

 

(3.198a) 

 

𝑬𝑛𝑙(𝒖) = 𝑬𝑛𝑙 =

[
 
 
 
 
 
 
 
 
 
 
1

2
𝑢𝑘,1𝑢𝑘,1

1

2
𝑢𝑘,2𝑢𝑘,2

1

2
𝑢𝑘,3𝑢𝑘,3

𝑢𝑘,1 + 𝑢𝑘,2

𝑢𝑘,2 + 𝑢𝑘,3

𝑢𝑘,1 + 𝑢𝑘,3]
 
 
 
 
 
 
 
 
 
 

 

 

 

(3.198b) 

The subscript 𝑙 and  𝑛𝑙 stand for linear and nonlinear. From Eq. (3.197), the incremental 

form of the strain – displacement relationship is 

 𝛿𝑬 = (𝑫𝐸 + 𝑬𝑛𝑙(𝒖))𝛿𝒖 (3.199) 

From the principle of virtual displacement, the virtual work, 𝛿𝑊 is 

 
𝛿𝑊 = 𝛿𝒖𝑇𝑴𝒖̈ + 𝛿𝒖𝑇𝑨𝒖̇ + ∫𝛿𝑬𝑇𝑺

𝛺0

𝑑𝛺0 − 𝛿𝒖𝑇𝑭𝑒𝑥𝑡 −  𝛿𝒖𝑇𝑹 = 0  (3.200) 

Where 𝛺0 is the domain of the initial configuration; 𝑭𝑒𝑥𝑡 is the vector external loads; 

𝑹 is the contact reaction vector; 𝑨 is the damping matrix; 𝑴 is the mass matrix; 𝒖̇ is the 

velocity vector and 𝒖̈ is the acceleration vector. The Lagrangian elasticity tensor of Eq. 

(3.14) can be split into deviotoric and pressure components, respectively as  

 
ℂ =

𝜕𝑺

𝜕𝑬
= ℂ𝒅 + ℂ𝒑 

(3.201) 

These two components can be evaluated to a Neo Hookean case as (Bonet and Wood, 

1997) 

 
ℂ𝑑 = 2

𝜇

𝐽
2

3⁄  
[
1

3
𝑡𝑟𝑪 𝐽2 −

1

3
𝑰 ⊗ 𝑪−1 −

1

3
𝑪−1 ⊗ 𝑰 +

1

9
𝑡𝑟𝑪𝑪−1 ⊗ 𝑪−1]  

 

(3.202a) 

 ℂ𝑝 = 𝑘(𝐽 − 1) 𝐽 [𝑪−1 ⊗ 𝑪−1 − 2𝕀]  (3.202b) 
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𝑘 is the bulk modulus, 𝑪 is the right Cauchy - Green Tensor, 𝐽  is the measures of change 

in volume, and the fourth order tensor 𝕀 is defined as, 

 
𝕀 =

𝜕𝑪−1

𝜕𝑪
 

 

(3.203a) 

 
𝕀𝑖𝑗𝑘𝑙 =

𝜕(𝐶−1)𝑖𝑗

𝜕𝐶𝑘𝑙
= (𝐶−1)𝑖𝑘(𝐶−1)𝑗𝑙 

 

(3.203b) 

Using Eq. (3.199), Eq. (3.201) becomes 

 𝛿𝑺 = ℂ𝛿𝑬 = ℂ(𝑫𝐸 + 𝑬𝑛𝑙(𝒖)) 𝛿𝒖 (3.204) 

Substituting Eq. (3.199) into Eq. (3.200) gives 

 
𝛿𝑊 = 𝛿𝒖𝑇𝑴𝒖̈ + 𝛿𝒖𝑇𝑨𝒖̇ + 𝛿𝒖𝑇 ∫(𝑫𝐸 + 𝑬𝒏𝒍(𝒖))

𝑇
𝑺

𝜴𝟎

𝑑𝛺0 − 𝛿𝒖𝑇𝑭𝑒𝑥𝑡

−  𝛿𝒖𝑇𝑹 = 0 

 

 

(3.205) 

 

The vector of internal forces is defined by 

 
𝑭𝑖𝑛𝑡 = ∫(𝑫𝐸 + 𝑬𝒏𝒍(𝒖))

𝑇
𝑺

𝜴𝟎

𝑑𝛺0  

(3.206) 

Eq. (3.205) reduces to a set of nonlinear equations given as 

 𝑴𝒖̈ + 𝑨𝒖̇ + 𝑭𝑖𝑛𝑡 − 𝑭𝑒𝑥𝑡 − 𝑹 = 0 (3.207) 

Eq. (3.207) could be rewritten as 

 𝑴𝒖̈ = 𝑭 + 𝑹 (3.208) 

Where 

 𝑭 = 𝑭𝑒𝑥𝑡 − 𝑭𝑖𝑛𝑡 − 𝑨𝒖̇ (3.209) 

Eq. (3.208) is to be solved with initial conditions at 𝑡 = 0, 

 𝒖̇ = 𝒖̇0       𝑎𝑛𝑑       𝒖 = 𝒖0 (3.210) 

 

3.4.5 Tangent Stiffness Matrix 

Differentiating 𝑭𝑖𝑛𝑡 with respect to the nodal displacement 𝒖 gives the tangent stiffness 

matrix 



 

Chapter 3: Methodology 

108 

 

 
𝑲 =

𝜕𝑭𝑖𝑛𝑡

𝜕𝒖
= 𝑲𝑒 + 𝑲𝑔 + 𝑲𝑢 

(3.211) 

where 𝑲𝑒, 𝑲𝒈 and  𝑲𝑢 are the elastic, geometric and initial displacement stiffness 

matrices respectively given as 

 
𝑲𝑒 = ∫ 𝑫𝐸

𝑇ℂ𝑫𝐸𝑑𝛺0
𝛺0

 (3.212a) 

 
𝑲𝑔 = ∫

𝜕𝑬𝑛𝑙
𝑇

𝜕𝒖
𝑺𝑑𝛺0

𝛺0

 
(3.212b) 

 
𝑲𝑢 = ∫ (𝑫𝐸

𝑇ℂ𝑬𝑛𝑙 + 𝑬𝑛𝑙
𝑇 ℂ𝑫𝐸 + 𝑬𝑛𝑙

𝑇 ℂ𝑬𝑛𝑙)𝑑𝛺0
𝛺0

 (3.212c) 

 
 

3.5 Pseudo-Rigid-Body-Model of Compliant Athletics Systems 

3.5.1  Flex-Run  

Based on the pseudo-rigid-body-model, a 2R pseudo-rigid-body-model that consist of 

three rigid links joined by two revolute joints and two torsion springs has been proposed 

by Yu et al (2012).  

 

Fig. 3.7: PRBM of a Flex-Run 
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The 2R pseudo-rigid-body-model is significant to expand the application of pseudo-

rigid-body-model in analysis and design of CMS particularly in the further study on the 

dynamics of CMS. For a 2R pseudo-rigid-body-model with end force, the path of the 

beam end may be accurately modelled by three rigid links joined at two pivots. Torsion 

springs represent the resistance of the beam deflection. The length of each link in the 

pseudo-rigid-body-model is 𝛾𝑖 (𝑖 = 0,1,2) and 𝛾𝑖 is called the characteristics radius 

factor. The product 𝛾𝑖𝑙 is the characteristic radius. The pseudo-rigid-body 

approximation will be used to parameterize the deflection path, angular deflection of 

the beam end and the pseudo-rigid-body angle represented by the load-deflection 

relation in Θ𝑖  (𝑖 = 1, 2)  the slope angle of the 2R pseudo-rigid-body-model is the angle 

between the pseudo-rigid-body link 𝛾𝑖𝑙 (𝑖 = 1, 2) and its undeflected position 𝛩 =

𝛩1 + 𝛩2  as shown in Fig. 3.7.  𝑎 and 𝑏  are the 𝑦 and 𝑥 coordinate of the beam 

deflection. The deflection angles of two torsion springs are 𝛩1 and Θ2. The 

characteristic radius factor of the three pseudo-rigid links are 𝛾0 , 𝛾1 and 𝛾2 satisfying  

 𝛾0 + 𝛾1 + 𝛾2 = 1  (3.213) 

The part of the applied force 𝑷𝐹 = [
𝑃𝐹𝑥

𝑃𝐹𝑦
] = [

𝑏
𝑙⁄  

𝑎
𝑙⁄
] are  

 𝑃𝐹𝑥 = 𝛾0 + 𝛾1 𝑐𝑜𝑠 𝛩1 + 𝛾2 𝑐𝑜𝑠 𝛩    (3.214a) 

 𝑃𝐹𝑦 = 𝛾1 𝑠𝑖𝑛 𝛩1 + 𝛾2 𝑠𝑖𝑛 𝛩    (3.214b) 

The vector from part of the first torsion spring  𝑃0 to 𝑃𝐹 is 𝑷0𝐹 = [
𝑃𝑥

𝑃𝑦
]; where 

 𝑃𝑥 = 𝑃𝐹𝑥 − 𝛾0  (3.215a) 

 𝑃𝑦 = 𝑃𝐹𝑦  (3.215b) 

 
𝛩2 = 𝑐𝑜𝑠−1 (

𝑃𝑥
2 + 𝑃𝑦

2 − 𝛾1
2 − 𝛾2

2

2𝛾1𝛾2
) 

 (3.215c) 
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𝛩1 = 𝑐𝑜𝑠−1
𝑃𝑥(𝑃𝑥

2 + 𝑃𝑦
2 − 𝛾1

2 − 𝛾2
2) ± 𝑃𝑦√4𝛾1

2(𝑃𝑥
2 + 𝑃𝑦

2) − (𝑃𝑥
2 + 𝑃𝑦

2 − 𝛾1
2 − 𝛾2

2)
2

2𝛾1(𝑃𝑥
2 + 𝑃𝑦

2)
 

    

(3.215d) 

Yu et al (2012) found the optimal characteristic radius factors as 𝛾0 = 0.1; 𝛾1 = 0.54 

and 𝛾2 = 0.36. The spring constant 𝐾1 and 𝐾2 depend on the stiffness coefficient 𝐾Θ1 

and 𝐾Θ2; geometry 𝐼 𝑙⁄  ; charactereristic radius factor 𝛾1 and 𝛾2 and material properties 

𝐸, i.e 

 
𝐾1 = 𝛾1𝐾𝛩1

𝐸𝐼

𝑙
  

   (3.216a) 

 
𝐾2 = 𝛾2𝐾𝛩2

𝐸𝐼

𝑙
  

   (3.216b) 

Yu et al. (2012) defined the stiffness coefficient as 𝐾Θ1 = 3.4042 and 𝐾Θ2 = 1.5813 

The pseudo-rigid-body-dynamic-model for CMs can be developed according to the 

principle of dynamic equivalence. The kinetic parameters and characteristics of the 

dynamic model is  

 𝑟1 = 𝛾0𝑙  ;     𝑟2 = 𝛾1𝑙  ;     𝑟3 = 𝛾2𝑙    (3.217) 

𝑟1 ; 𝑟2 and 𝑟3 are the characteristic radii of the three links. The dynamic springs are not 

the same as the springs with constant 𝐾 in the pseudo-rigid-body-model because the 

menses are not considered in the static and kinematic analysis of CMs. Generally, are 

lumped mass and two torsion springs are needed for the dynamic equivalence of one 

link. The dynamic equivalence of kinetic energy, 𝑇1 for link 1 can be expressed as  

 
𝑇1 =

1

2
𝑚1

𝑠𝑉1
2 =

1

2
𝑚1𝑉𝑚1

2 +
1

2
𝐽1𝜔1

2 
   (3.218) 

Where  

 
𝑉1 = 𝑟1𝜔1  ;    𝑉𝑚1 =

1

2
𝑟1𝜔1 

 (3.219) 

 
𝑚1

𝑠 =
1

4
𝑚1 +

𝐽1

𝑟1
2 

 (3.220) 
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𝑚1; 𝐽1 and 𝜔1are the mass, mass moment of inertia and the angular velocity of link 1. 

Equally, for the link 2, the dynamic equivalence if kinetic energy, 𝑇2 can be expressed 

as  

 
𝑇2 =

1

2
(𝑚1

𝑠′
+ 𝑚2

𝑠′
)𝑉2

2 
   (3.221) 

Where  

 𝑉2 = 𝑟2𝜔2    (3.222) 

 
𝑚1

𝑠′
=

1

4
(𝑚1 − 𝑚2) +

𝐽1 − 𝐽2

𝑟1
2 − 𝑟2

2 
 (3.223) 

 
𝑚2

𝑠′
=

1

4
(𝑚2 − 𝑚3) +

𝐽2 − 𝐽3

𝑟2
2 − 𝑟3

2 
 (3.224) 

𝑚2; 𝐽2 and 𝜔2 are the mass, mass moment of inertia and angular velocity of link 2. 𝑚3 

and 𝐽3 are the mass and angular velocity of inertia of link 3 

Also, for the link 3, the dynamic equivalence of kinetic energy, 𝑇3 can be expressed as  

 
𝑇3 =

1

2
𝑚2

𝑠𝑉3
2 =

1

2
𝑚3𝑉𝑚3

2 +
1

2
𝐽3𝜔3

2 
   (3.225) 

Where  

 
𝑉3 = 𝑟3𝜔3  ;    𝑉𝑚3 =

1

2
𝑟3𝜔3 

 (3.226) 

 
𝑚2

𝑠 =
1

4
𝑚3 +

𝐽3

𝑟3
2 

 (3.227) 

𝜔3 is the angular velocity of link 3.  

 

Therefore, the kinetic energy, 𝑇 of the dynamic system is  

 
𝑇 =

1

2
𝑚1

𝑠𝑉1
2 +

1

2
𝑚2

𝑠𝑉2
2 +

1

2
(𝑚1

𝑠′
+ 𝑚2

𝑠′
)𝑉2

2 
 (3.228) 

Which could be rewritten as; 

 
𝑇 =

1

2
𝑚1

𝑠𝑟1
2(𝛩̇1)

2
+

1

2
(𝑚1

𝑠′
+ 𝑚2

𝑠′
)𝑟2

2(𝛩̇2)
2
+

1

2
𝑚2

𝑠𝑟3
2(𝛩̇)

2
 

  (3.229) 

Eq, (3.229) can be expressed in the form 
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𝑇 =

1

2
𝑀𝑑(𝛩̇)2 

  (3.230) 

Where 𝑀𝑑  is the generalised mass of the system.  

The elastic deformation energy, 𝑊 of the flexible beam is given as 

 

𝑊 = ∫𝑭. 𝑑𝛿

𝛿

0

 

  

 (3.231) 

Where 𝑭 is the applied force and 𝛿 is the resulting deflection. The deflection, 𝛿 can be 

obtained as 

 𝑑𝛿 = 𝛾𝑇𝑙𝑑𝛩   (3.232) 

Where  

 𝛾𝑇 = 𝛾0𝑙 + 𝛾1𝑙 + 𝛾2𝑙   (3.233) 

Therefore, Eq. () becomes 

 
𝑊 = ∫ 𝐹𝛾𝑇𝑙 𝑑𝛩

𝛩

0

 

  (3.234) 

The torque, 𝑇𝑞𝑃 on the pin joints is given as 

 𝑇𝑞𝑝 = 𝐾1𝛩1 + 𝐾2𝛩2   (3.235) 

Expressing the, 𝑇𝑞𝑃 as a product of the transverse force 𝐹 and the moment arm gives 

 𝑇𝑞𝑝 = 𝐹 [𝑐𝑙 + (𝛾1𝑙 + 𝛾0𝑙 𝑐𝑜𝑠𝛩1)𝑐𝑜𝑠𝛩2]   (3.236) 

Combining Eqs. (3.235) and (3.236) results in  

 
𝐹 =

𝐾1𝛩1 + 𝐾2𝛩2

𝛾2𝑙 + (𝛾1𝑙 + 𝛾0𝑙 𝑐𝑜𝑠𝛩1)𝑐𝑜𝑠𝛩2
 

  (3.237) 

Substituting Eq. (3.237) into Eq. (2.234) yields  

  𝑊 = 𝑓(𝐾1, 𝐾2, 𝛩, 𝛾0, 𝛾1, 𝛾2)   (3.238) 

This implies that the potential energy, 𝑈 of the dynamic torsion spring, is 

 𝑈 = 𝑓(𝐾1, 𝐾2, 𝛩, 𝛾0, 𝛾1, 𝛾2)   (3.239) 
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Substituting the kinetic energy 𝑇 of Eq. (3.230) and potential energy 𝑈 of Eq. (3.239) 

unto the Lagrangian equation. 

 𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝛩̇
) −

𝜕𝑇

𝜕𝛩
+

𝜕𝑈

𝜕𝛩
= 𝑄 

   (3.240) 

This gives the generalized dynamic equation of the dynamic system for the compliant 

mechanism in the following form. 

 𝑀𝑑𝛩̈ + 𝐾𝑑𝛩̇ = 𝑃    (3.241) 

Where 𝐾𝑑 is the potential energy of the dynamic torsion spring for the Flex-Run. 

 

3.5.2 Pole Vault  

 
 

Fig. 3.8: PRBM of the pole vault 

 

The pseudo-rigid-body approximation shown in Fig. 3.8 will be used to parameterize 

the deflection path, the angular deflection of the pole vault and load-deflection 

relationships in  𝛩, the pseudo-rigid-body angle which is the angle between the pseudo-
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rigid-body and its undeflected position. The coordinate of the end the deflected pole 

vault may be given by equations parameterized in terms of the pseudo-rigid-body angle, 

𝛩 written as 

 𝑎

𝑙
= 1 − 𝛾(1 − 𝑐𝑜𝑠𝛩)    (3.242) 

 𝑏

𝑙
= 𝛾𝑠𝑖𝑛𝛩  

   (3.243) 

𝛾 is the characteristic radius factor. The spring constant 𝐾′, may be written as  

 
𝐾′ = 𝛾𝐾𝛩

′
𝐸𝐼

𝑙
  

   (3.244) 

The kinetic parameters and characteristics of the dynamic model is  

 𝑟1
′ = 𝛾0𝑙  ;     𝑟2

′ = 𝛾1𝑙     (3.245) 

 For the dynamic model of the pole vault, the dynamic equivalence of kinetic energy, 

𝑇1
′ of link 1 can be expressed as  

 
𝑇1

′ =
1

2
𝑚1

𝑠′
𝑉1

′2 =
1

2
𝑚1

′ 𝑉𝑚1
′ 2

+
1

2
𝐽1
′𝜔1

′ 2
  

   (3.246) 

Where  

 
𝑉1

′ = 𝑟1
′𝜔1

′ ;     𝑉𝑚1
′ =

1

2
𝑟1

′𝜔1
′  

   (3.247) 

 
𝑚1

𝑠′
=

1

4
𝑚1

′ +
𝐽1
′

𝑟1
′2 

  
   (3.248) 

Also, for the link 2, the dynamic equivalence of kinetic energy, 𝑇2
′ can be expressed as  

 
𝑇2

′ =
1

2
𝑚2

𝑠′
𝑉2

′2 =
1

2
𝑚2

′ 𝑉𝑚2
′ 2

+
1

2
𝐽2
′𝜔2

′ 2
  

   (3.249) 

Where  

 
𝑉2

′ = 𝑟2
′𝜔2

′ ;     𝑉𝑚2
′ =

1

2
𝑟2

′𝜔2
′  

   (3.250) 

 
𝑚2

𝑠′
=

1

4
𝑚2

′ +
𝐽2
′

𝑟2
′2 

  
   (3.251) 

Therefore the kinetic energy, 𝑇′ 
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𝑇′ =

1

2
𝑚1

𝑠′
𝑉1

′2 +
1

2
𝑚2

𝑠′
𝑉2

′2 
 (3.252) 

 
Which could be rewritten as; 

 
𝑇′ =

1

2
𝑚1

𝑠′
𝑟1

′(𝛩̇)
2
+

1

2
𝑚2

𝑠′
𝑟2

′(𝛩̇)
2
 

  (3.253) 

Eq (h) can be expressed in the form 

 
𝑇′ =

1

2
𝑀𝑑

′ (𝛩̇)2 
   (3.254) 

Where 𝑀𝑑
′

 is the generalised mass of the system. 

The potential energy, 𝑈′ of a dynamic torsion spring, is 

 
𝑈′ =

1

2
𝐾𝑑

′𝛩2 
   (3.255) 

Where 𝐾𝑑
′  is the potential energy of the dynamic torsion spring for the pole vault. It 

implies that 

 𝐾′ = 𝐾𝑑
′     (3.256) 

This means that the stiffness constant of the dynamic torsional spring in the dynamic system is 

approximately the same as that of the spring in pseudo-rigid-body-model. Substituting the 

kinetic energy 𝑇′ of Eq () and potential energy U of Eq () unto the Lagrangian equation. 

 𝑑

𝑑𝑡
(
𝜕𝑇′

𝜕𝛩̇
) −

𝜕𝑇′

𝜕𝛩
+

𝜕𝑈′

𝜕𝛩
= 𝑄′ 

   (3.257) 

This gives the generalized dynamic equation if the dynamic system for the pole vault in the 

following form. 

 𝑀𝑑
′ 𝛩 ̈ + 𝐾𝑑

′ 𝛩̇ = 𝑃′    (3.258) 

 

3.6 Solution Procedure 

AceGEN is used for the automatic derivation of formulae needed in the numerical 

procedures. Symbolic derivation of the characteristic quantities (e.g. gradients, tangent 

operators, sensitivity vectors etc.) leads to exponential behavior of derived expressions, 
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both in time and space. AceGEN offers multi-language code generation (Fortran, C, 

Mathematica etc.) and automatic interface to general numerical environments 

(MathLink connection to Mathematica) and specialized finite element environments 

(AceFEM, FEAP, ELFEN, ABAQUS etc.). Fig. 5.55 shows the system for generating 

a finite element code and its further analysis through the end compiler AceFEM. 

 

Fig. 3.9: System for generating a finite element code and its further analysis 
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4 
 EXPERIMENTAL TEST VALIDATION 

The BOSE® ElectroForce (ELF) 3200 testing machine (Fig. 4.1) in conjunction with 

the WinTest® control software was used to conduct the mechanical experiments in 

uniaxial cyclic loading and uniaxial tension. The test instrument incorporate proprietary 

Bose linear motion technologies and WinTest controls to provide a revolutionary 

approach to mechanical fatigue and dynamic characterization. Fig 4.2 is the WinTest 

control overview. 

 

Fig. 4.1: Test Equipment Setup 

Test specimen 
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Fig. 4.2: WinTest Overview 

 

The ELF has a maximum load of 225 N and a maximum frequency of 400 Hz. A set of 

low mass grips, Model GRP-TCDMA450N from BOSE ElectroForce (Eden Prairie, 

MN, USA), were used. The load cell had a maximum load rating of 2.5 N (250 g) and 

resolution of ±10 mg. The ELF 3200 measures displacements via a Capacitec 100 μm 

displacement transducer (Model HPC-40/ 4101) used as a feedback for the control loop.  

Knowing the width and thickness of the specimen, cross-sectional area of the specimen 

could be calculated using the formula: 

 𝐴𝑟𝑒𝑎 = 𝑊𝑖𝑑𝑡ℎ × 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (4.1) 

The stress on the sample could be calculated by using the formula: 

 𝑆𝑡𝑟𝑒𝑠𝑠 = 𝐹𝑜𝑟𝑐𝑒
𝐴𝑟𝑒𝑎⁄  (4.2) 

Now, engineering strain is given by the formula: 

 𝜀 = ∆𝑙
𝐿0

⁄  (4.3) 
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The displacement obtained from the testing data is ∆𝑙. 𝐿0 is the gauge length (22mm). 

So strain, 𝜀 could be calculated. Knowing stress and strain, stress versus strain curves 

could be plotted. 

 

4.1 Sample preparation 

Low Density Polypropylene (LDPP) and Low Density Polyethylene (LDPE) were 

selected as the test materials. The geometry and test length of the specimens are as 

shown in Fig. 4 3. It has a gauge length of 22mm. The specimen’s dimensions were 

obtained with the use of the micrometre screw gauge and the vernier calliper. 

          
Fig. 4.3: Geometry of Test Specimens 

 

4.2 Uniaxial Tensile Tests 

The aim of tensile testing was to evaluate the mechanical response of the materials to a 

known strain or deformation rate. This gives a plot of stress versus strain from which a 

wealth of information may be obtained such as the brittle or ductile behaviour, tensile 

modulus or an indication of stiffness of the material, tensile strength etc. The tensile 

testing data was obtained as a text file in force versus displacement form. The testing 

procedure can be described in steps as follows: 
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 The machine and the software were turned on. 

 The specimen for tensile testing was a dumbbell-shaped strip, which was cut 

from the compression-moulded sheet using a penknife. Its width and thickness 

were measured using a micrometre. 

 The specimen was placed between the grips and the grips were tightened. Over-

tightening of the grips was avoided, in order to avoid failure at grips. 

 The linear motor was turned on using the “locals” button in the software. 

 Load and displacement associated with the grips were tarred.  

 The system was first tuned for a square wave of certain amplitude. The purpose 

of tuning was to make the command given to the machine by the software and 

the output generated by the machine match as closely as possible. Adjusting the 

(Proportional-Integral-Derivative) PID control parameters during the time when 

the square wave was acting on the system did the required tuning. 

 The tuning was double checked by re-tuning the system with a sinusoidal 

waveform. 

 The waveform was set to “ramp”. This was the waveform used for tensile 

testing. Strain rate could be set according to requirements, by typing the value 

in the appropriate box. 

 File names for saving the test data were specified using the data acquisition 

menu. This menu also allowed deciding the rate of scanning, number of scans 

and time between the scans for acquiring data. 

 The machine stopped automatically after the specimen failed. In case the 

specimen did not fail, the machine stopped acquiring data beyond a critical 

extension of the specimen. This value was 6.5mm.  2-3 specimens were tested 

for each material (LDPP and LDPE). 
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Fig. 4.4: Stress – strain curve of some polymers 

 

The specimens were placed under tension at a controlled rate of displacement (0.02 

mm/s). The clamping length was about 40 mm. The mechanical properties, i.e. Young’s 

modulus, shear modulus, ultimate strain and stress were assessed for the specimens. 

The average of the results was taken as the resultant value. The local data (stress and 

strain) is determined from the global data (force and displacement). The gradients of 

the straight line section of the resulting stress–strain curves shown in Fig. 4.4 give their 

elastic moduli. The material parameter 𝜇𝑝, is obtained by fitting the experimental 

stress–strain curve into Eq. (3.150). This yield 𝜇𝑝 = 43.04 𝑀𝑃𝑎 for LDPP and 𝜇𝑝 =

71.19 𝑀𝑃𝑎 for LDPE. 

 

 

4.3 Fatigue Tests 

The fatigue experiments were conducted between a minimum and maximum load in 

tension for a prescribed number of cycles using a set frequency. All fatigue tests were 
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conducted at 10 Hz. The residual strain was determined by considering the 

displacement reading on the oscilloscope at the initiation of the test and at the 

conclusion of the dwell phase. The residual strain was measured by subtracting the 

oscilloscope displacement value at the initiation of the test from the displacement at the 

conclusion of the constant-stress amplitude fatigue phase. Once the specimen was 

unloaded to zero stress and allowed to dwell for a short time. It should be noted that the 

test was displacement controlled, i.e., the specimen was pulled by a pre-determined 

amount with each step of testing. The corresponding load exerted on the sample for 

pulling was recorded. The same method of data acquisition employed in the tensile test 

is adopted in the fatigue test.  

 

Ten samples for each of the test materials (LDPP and LDPE) were tested in this 

investigation. Approximately six samples broke at the grip interface at the conclusion 

of the fatigue loading phase, which indicated premature failure due to a stress 

concentration near the grip interface. For this reason, these experimental results were 

omitted from the results in this study.  

 

Fig. 4.5 is the oscilloscope output of load and displacement verses time response of the 

LDPP samples while Figs. 4.6 and 4.7 display their 1s interval of the strain verses time 

and stress verses time response under sinusoidal cyclic loading conditions after 

equilibrium stress and strain values were reached. These samples were subjected to 

uniaxial fatigue loading conditions. The graphs show the behaviour of the samples 

under different displacement inputs. The strain range increases with an increase in the 

input displacement  
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Fig. 4.5: Oscilloscope output of load and displacement versus time response of a 

sample undergoing uniaxial sinusoidal loading 

 

 
Fig. 4.6: A second strain cycles 
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Fig. 4.7: A second stress cycles 

 

4.4 Hysteresis Loop  

In fatigue, the area of a stress–strain hysteresis loop is a measure of mechanical energy 

lost due to viscoelastic damping during each cycle of extension and compression. For 

a viscoelastic material subject to the cyclic loading, the hysteresis of the material can 

be defined by plotting the input stress  t  versus the responding strain  t  for one 

cycle of motion. Polymeric material hysteresis loops are difficult to analyse but can 

reveal interesting insight into the behaviour of the material during fatigue testing (Fern 

et al., 2012). Fig. 4.8 shows hysteresis loops of the low density polypropylene for 10 

complete cycles. From the figure, the hysteresis curves for LDPP are generally 

asymmetrical. The graph shows an early increase in maximum stress with increase in 

the input displacement load before it got to the maximum value and started decreasing.  

The loops had immediate stability for all range of displacement load input.  
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 Fig. 4.8: Hysteresis loop for the LDPP material 

The area captured within the hysteresis loop is equal to the dissipation energy per cycle 

of harmonic motion by the material. Within the tensile portion of the loop considerable 

plastic strain and crack propagation energy is lost as the intersection through the zero 

stress line is at a positive strain value. During compression the intersection of the zero 

stress line is very close to zero, implying little plastic strain. This behaviour of the 

material in compression reduces the amount of energy lost per cycle. 
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5 
 DISCUSSION OF RESULTS 

Results were obtained for a number of CMs. Simulation results were compared with published 

laboratory investigated CMs. Four cases were looked into for this analysis. The entire 

mechanisms geometries were built as adequate with the essential and natural boundary 

conditions stated.  

 

5.1 Simulation Examples with Published Laboratory Investigated 

Compliant Mechanisms 

 

5.1.1 Compliant Bistable Micromechanism (CBMM) 

The experimental setup by Tsay et al., (2005) composes of vibration isolation platform to 

separate external vibrations; a micrograph system to capture images to be recorded by 

computer; a workbench where the chip is laid; scanning electronic microscope (SEM) for 

observation and measurement; power supply system to drive the actuators. The purpose of their 

experiment was to observe if the micromechanism was bistable and to measure the deflection 

of the bistable mechanism.  

 
 

Fig. 5.1: SEM images of the Compliant Bistable Mechanism switched by a probe. 

(a) Before switched;   (b) After switched  
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Fig. 5.1(a) and (b) show the images of the compliant bistable micromechanism before and after 

being switched. After stirred by the probe, the compliant bistable micromechanism switched 

from the first stable position to the second one and held still. It indicates that the compliant 

bistable micromechanism functioned as expected. The displacement of central mass was 

measured by the attached function of SEM. Fig. 5.2 is the deformed and undeformed Compliant 

Bistable Micromechanism simulated from AceFEM. 

 

Fig. 5.2: Deformed and undeformed Complaint Bistable Micromechanism 

 

 

Fig. 5.3: Stresses of elastic members of Complaint Bistable Micromechanism 
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Fig. 5.3 shows the load - stress history of the CBMM. Error bars at 5% deviation show that the 

linear and geometric nonlinear results did not show any form of convergence with the 

experimental results unlike the hyperelasticity results.  

 

There is a wider range of deviation between the linear model and the experimental results while 

the results obtained from the geometric nonlinear model displayed a deviation from the 

experimental results. The results of the hyperelasticity model however are in agreement with 

that from experiment.  We attribute the little discrepancy between the experimental and the 

hyperelasticity results to the differences in the device geometry, mainly in the thickness of the 

compliant mechanism which is highly uncertain due to low fabrication tolerances of 

micromachining. 

 

5.1.2 Compliant Mechanical Amplifier (CMA) 

Ouyang et al. (2008) conducted an experiment using the prototype Compliant Mechanical 

Amplifier (CMA) as shown in Fig. 5.4. The strokes of PZT actuators generated the required 

input while the output displacement of the CMA was captured using an eddy current sensor 

and recorded by a voltmeter. Fig. 5.5 is the deformed and undeformed Complaint Mechanical 

Amplifier simulated from AceFEM. 

 
(a)                                                                            (b) 

 

Fig. 5.4: (a) Prototype of CMA  (b) Compliant Mechanical Amplifier 
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The linear and geometric analysis in Fig. 5.6  give a different result pattern from the results 

obtained in the experiment and finite deformation in the input - output displacement graph. 

Error bars at 5% deviation show that the linear and geometric nonlinear analyses did not display 

any form of convergence with the experimental results unlike the hyperelasticity analysis.  

 

Fig. 5.5:  Deformed and undeformed Complaint Mechanical Amplifier 

 

 
Fig. 5.6: Output - Input displacement history of the Compliant Mechanical Amplifier 
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However, the three categories of analysis results show an initial agreement before parting ways 

at the 3 mm input displacement. It means that before this deviation, ordinary linear or only 

geometric nonlinear analysis could capture the deformation behaviour in the compliant 

mechanism. Any result obtained after this would not be reliable for any engineering inference. 

 

5.1.3 Compliant Forceps 

Shuib et al. (2007) used the pseudo rigid body method as a methodology to perform the stress 

analysis of a compliant forceps. They used finite element analysis by I – DEAS (Integrated 

Design Engineering Analysis Software) to validate this compliant mechanism. Fig. 5.7 shows 

the compliant forceps and its finite element analysis meshing. 

 

               

Fig, 5.7: Compliant forceps and its finite element analysis  

 

The load – maximum stress history of the compliant forceps is shown in Fig. 5.8. The  I-DEAS 

result, linear and geometric nonlinear assumptions results are all in the same line graph. The 

inclusion of material nonlinearity, gave a different graph pattern from previous three graphs. 

However, the PRBM result shows a wide range of deviation at 5% error bars deviation. The 

results show that using the PRBM, linear finite analysis, linear or geometric nonlinear models 

cannot effectively interpret the large deformation behaviour of CMs.  
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Fig. 5.8: Load verses Maximum stress history of Compliant Forceps 

 

5.1.4 Compliant Stroke Amplifier (CSA) 

A planar compliant stroke amplifier is described with initial topology, size, shape and boundary 

conditions as shown in Fig. 5.9.   

 

Fig, 5.9: Problem specification for stroke amplifier design  
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The direction of the desired output motion is out of phase (opposite to input direction) with the 

input displacement Joo et al. (2001). The CM was analysed using linear, geometric nonlinear 

and hyperelasticity assumptions. The deformed and undeformed mechanisms with the 

respective assumptions are shown in Figs. 5.10 - 5.12 

 

 
Fig. 5.10: Deformed complaint stroke amplifier mechanism modelled with all linearity 

 

 

 
Fig. 5.11: Deformed complaint stroke amplifier mechanism modeled with geometric 

nonlinearity (GNL) 
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Fig. 5.12: Deformed complaint stroke amplifier mechanism modeled with 

hyperelasticity 

 

 
Fig. 5.13: Output - Input displacement history of Complaint Stroke Amplifier 

Mechanism 
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Fig. 5.13 is the input - output displacement graph for the CSA.  Error bars at 5% deviation 

show that the linear and geometric nonlinear analyses did not display any form of convergence 

with the experimental results unlike the hyperelasticity analysis. Nevertheless, there is an initial 

agreement of the three categories of analysis before deviating noticeably from the 0.2 mm input 

displacement. It means that before this deviation, usual linear or only geometric nonlinear 

analysis could capture the deformation behaviour in the compliant mechanism. Any result 

obtained after this would not be reliable for any engineering inference. 

 

Fig. 5.14 shows the dynamic response of compliant links of the CSA. Unsteady conditions are 

observed between 0 and 20 milliseconds for the three graphs. The geometric nonlinear and 

linear signals show that there are respectively, less than 75% and 50% probabilities that any 

deviation from the hyperelasticity result is due to chance.  

 
Fig. 5.14: Dynamic response of a compliant link 

 

Based on the standard probability p>0.95, these probabilities are not within the accepted 

deviation. In all, the combined effect of geometric and material nonlinearities show a wide 
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deviation from the linear and geometric nonlinear assumptions. Initially, the displacement 

amplitude changes with each motion, stabilizes at the middle of the motion and varies towards 

the end of the motion cycle. Hyperelasticity effects become critically important at the end 

points. Failure may result from these end points. This further show why compliant systems that 

are subjected to large deformations cannot be modelled accurately using linear or only 

geometrical nonlinear models. 

 

5.2 Simulation Examples with compliant athletics systems 

5.2.1  Flex-Run  

Fig. 5.15 shows the deformation of the Flex-Run simulated from AceFEM . 

 
 

Fig. 5.15: Deformed Flex-Run 

 

The dynamic response of the Flex-Run is shown in Fig. 5.16. Unsteady conditions are observed 

between 0 and 15 milliseconds. The produced harmonics of hyperelasticity, GNL and linear 

results exhibit a wide deviation from one another between 15 and 92.5 milliseconds with the 

linear result being the farthest.  
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Fig. 5.16: Dynamic Response of Flex-Run 

 

 

 
Fig. 5.17: Stress vs Time for Flex-Run 
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Fig. 5.18: Strain vs Time for Flex-Run 

 

Figs. 5.17 and 5.18 are the stress and strain of the Flex-Run plotted in time domain. The 

produced harmonics in Fig. 5.17 shows that the hyperelasticity has the shortest amplitude 

within the middle range.  

  

Fig. 5.19: Norm. Displacement vs Frequency for Flex-Run 
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Fig. 5.20: Stress vs Frequency for Flex-Run 

 

 

Fig. 5.21: Strain vs Frequency for Flex-Run 

 

Figs. 5.19, 5.20 and 5.21 are the displacement, stress and strain of the Flex-Run plotted in 

frequency domain. The graphs have shown the disparities that exist when hyperelasticity is 

considered compared to other assumptions. The maximum frequencies with their 
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corresponding displacement, stress and strain occur at different points on the graphs for each 

analysis assumption. 

 

In all, from the dynamic response, GNL signal shows there is less 75% probability that any 

deviation from the hyperelasticity result is due to chance; while the linear and PRBM signals 

show that there are less 50% probabilities that any deviation from the hyperelasticity result is 

due to chance. Based on the standard probability p>0.95, these probabilities are not within the 

accepted deviation. In all, the combined effect of geometric and material nonlinearities show a 

wide deviation from the linear and geometric nonlinear assumptions. Initially, the displacement 

amplitude changes with each motion, stabilizes at the middle of the motion and varies towards 

the end of the motion cycle. Hyperelasticity effects become critically important at the end 

points.  

 

5.2.2 Pole Vault  

Fig. 5.22 shows deformation of the pole vault simulated from AceFEM used for the 

displacement - stress history. Fig. 5.23 is the displacement - stress history of the curve edge of 

the pole vault. The PRBM and the linear assumption show a straight line graph which is not 

ideal for such large deformation. However, the four results show an agreement up to 0.012 

normalized input displacement beyond which only geometric nonlinear and hyperelasticity 

results show some agreement before parting ways at 0.040 normalized input displacement. 

 

Figs. 5.24, 5.25 and 5.26 are the stress and strain of the pole vault plotted in time domain. The 

produced harmonics a wide deviation that exist without material nonlinearity inclusion. Figs. 

5.27, 5.28 and 5.29 are the displacement, stress and strain of the pole vault plotted in frequency 

domain. The maximum frequencies with their corresponding displacement, stress and strain 
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occur at different points on the graphs for each analysis assumption revealing the deviation that 

exist when material nonlinearity is considered compared to other assumptions. 

 

Fig. 5.22: Deformed pole vault 

 

 

Fig. 5.23: Stress – Displacement history of the curved edge of a pole vault  
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Fig. 5.24: Stress vs Time for Pole Vault 

 

 

 

Fig. 5.25: Strain vs Time for Pole Vault 
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 Fig. 5.26: Displacement vs Time for Pole Vault 

 

 

Fig. 5.27: Stress vs Frequency for Pole Vault 
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Fig. 5.28: Strain vs Frequency for Pole Vault 

 

 

 

Fig. 5.29: Norm. Displacement vs Frequency for Pole Vault 

 



 

Chapter 5: Discussion of Results 

 

144 

 

5.3 Effect of Shear Deformation using Compliant Cantilever and Four 

Bar Mechanism 

 

Compliant cantilever and four bar mechanisms are analysed and presented.  Figs. 5.30 and 5.32 

are the deformed and undeformed mechanisms. For the finite element implementation of the 

governing equation, AceFEM was used. The entire mechanisms geometry were built as 

adequate. The essential boundary and natural boundary conditions were stated with the base of 

the mechanism clamped.  Table 5.1 are the parameters used for simulation of the results. 

 

Table 5.1: Parameters for Simulation of Results 

 

Definition 

 

Symbol 

 

Value 

Lengths of the mechanism links l1 = l3 

l2 

0.7 m 

0.4 m 

Young’s Modulus E1 = E2 = E3 1103.61 MPa 

Density of material ρ1 = ρ2 = ρ3   913 kg/m3 

Poisson ratio v1 = v2 = v3  0.35 

Breadth of the compliant links b1  =  b3 

b2 

0.00318 m 

0.00239 m 

Heights of the compliant links h1 = h3 

h2 

0.00863 m 

0.00863 m 

Areas of the compliant links A1  =  A3 

A2 

27.4434 µm2 

20.6257 µm2 

Second moments of areas of the compliant 

links 

I1  =  I3 

I2 

0.170325 nm4 

0.128012 nm4 
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Fig. 5.30: Deformation of the compliant cantilever mechanism endpoint 

 

  
Fig. 5.31: Load–displacement of the compliant cantilever mechanism endpoint  

 

 

The simulated results in Figs. 5.31 and 5.36 show a deviation from straight line graph from 

linear assumptions to normal curves considering the effect of geometric nonlinearity. However, 

there is also a deviation between the geometric nonlinear consideration when the effect of shear 

deformation is captured and when it is not. Initially, the two nonlinear graphs show the same 

behaviour until 100 mN and 220 mN input forces for the compliant cantilever and four bar 

mechanisms respectively when the effect of the shear deformation is much that the deviation 
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starts becoming noticeable. Figs. 5.33 - 5.35 are the bending moment, axial and shear forces 

distributions of the deformed compliant four bar mechanism. 

  

Fig. 5.32: Deformation of the deformed mechanism 

 

Fig. 5.33: Bending Moment of the deformed mechanism 
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Fig. 5.34: Axial Force of the deformed mechanism 
 

 
 

Fig. 5.35: Shear Force of the deformed mechanism 
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Fig. 5.36: Load – displacement of the coupler midpoint 

 

5.4 Stress-Strain and Fatigue Life Results 

The stress – strain curve shown in Fig. 4.4 is for low density polypropylene (LDPP) and low 

density polyethylene (LDPE). It has shown that the constitutive law of a typical polymer 

exhibits a nonlinear relation. Hence, a linear material assumption will definitely not be 

appropriate for compliant mechanisms made of polymers.  

 

The fatigue life versus strain amplitude in a logarithmic scale are shown in Figs. 5.37 and 5.38 

for LDPP and LDPE respectively. The scattered points represent experimental results. The 

developed model result is compared with models used by earlier researchers. The comparative 

analysis of the theoretical prediction formula with the experimental data results show a strong 

agreement. However, the two models from literature show a level of agreement at high strain 
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amplitude but deviate noticeably from 0.10 mm/mm strain amplitude. The least square analysis 

of the results show that the result from the developed model has the least deviation from the 

experimental test results. It means that the developed model is more appropriate to study fatigue 

life of continuum polymeric compliant systems. 

 

Figs. 5.39 and 5.40 show the fitting of the experimental data with a curve and plotting this on 

the same axis with the prediction model for LDPP and LDPE at different damage variable 

values. It was found that the value of the damage variable, D that produces the curve that 

compared well with the experimental fitted curve is 0.0751. 

 

 

 Fig. 5.37: Fatigue Life,  
fN  versus strain amplitude for LDPP 
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Fig. 5.38: Fatigue Life,  
fN  versus strain amplitude for LDPE 

 

 
 

Fig. 5.39: Number of Cycles, N versus strain amplitude for Critical Damage Parameter 

and Experimental Fitted Curve for LDPP 
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Fig. 5.40: Number of Cycles, N versus strain amplitude for Critical Damage Parameter 

and Experimental Fitted Curve for LDPE 

 

5.5 Impact – Contact Analysis Results 

The impact-contact analysis of the Flex-Run is illustrated with an example problem where the 

goal is to determine the effects of impact force and contact time on the responses of an 

impacting Flex-Run. For the finite element approximation of the above formulations we used 

4-node isoperimetric elements. The entire mechanism geometry and the target surface were 

built as adequate. The essential and natural boundary conditions were stated for both the target 

and the contactor. The target is fixed while the contactor is impacting on the fixed target. The 

impact force and the contact time is varied in order to determine their influences on the 

responses of the Flex-Run.  Fig. 5.41 is the deformed Flex-Run on impact with the target 

surface. The Flex-Run material is carbon-fibre-reinforced polymer with average density of 

1740 kg/m3 and Young’s modulus of 72 GPa while the target surface is idealized as turf made 

from medium density polypropylene with average density of 980 kg/m3 and Young’s modulus 

of 1.8 GPa. The thickness of the turf is 10 mm.  
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Fig. 5.41: Deformed Flex-Run on impact 

 

 

5.5.1 Dynamic Response Characteristics 

Figs. 5.42, 5.43 and 5.44 illustrate the time histories of the effective stress, the impact force 

and the effective strain of the Flex-Run, respectively. Results reveal that Fig. 5.42 exhibits 

linear stress variation between 0.20 s and 0.30s contact time before stabilizing to a constant 

stress value of 148 MPa after 0.40s.  

 
 

Fig. 5.42: Effective stress of the flex-run against the contact time 
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In Fig. 5.43, there is an impulsive effect of about 0.1s at the initial time, after which force 

increases linearly with time in stages. Fig. 5.44 shows linear strain variation between 0.025s 

and 0.14s contact time after which there is a constant strain value of 0.202mm/mm, forming a 

shifted signal. 

 
 

Fig. 5.43: Impacting force of the flex-run against the contact time 

 

 

 
 

Fig. 5.44: Effective strain of the flex-run against the contact time 
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Figs. 5.45, 5.46 and 5.47 illustrate the effect of impact force on the effective stress, the impact 

force and the effective strain of the Flex-Run respectively. Fig. 5.45, shows that the effective 

stress has an irregular increase before stabilizing to a constant stress value of 145MPa after 

0.62 impact force. In Fig. 5.46, the normalized displacement showed a Sigmund formation 

before stabilizing to a constant displacement value of 0.386 after 0.62kN impact force. Fig. 

5.47 reveals that there is a Sigmund formation that adjusted to step signal after 0.52kN impact 

force. 

 
Fig. 5.45: Effective stress of the flex-run against the impacting force 

 

 
Fig. 5.46: Normalized displacement of the flex-run against the impacting force 
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Fig. 5.47: Effective strain of the flex-run against the impacting force 

 

5.5.2 Combined effect of impact force and contact time 

Fig. 5.48, 5.49 and 5.50 illustrate the combined effect of impact force and contact time on the 

displacement characteristics, the strain and stress behaviour of the impacting Flex-Run. 

 
 

Fig. 5.48: Displacement behaviour with contact time and force 
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Fig. 5.49: Strain behaviour with contact time and force 

 

 

 
 

Fig. 5.50: Stress behaviour with contact time and force 

 

 

Results reveal that increasing both the impact force and contact time showed an initial 

waveform and then increases to a peak value before decreasing to a constant value of the 

displacement. Increasing contact time and decreasing impact force showed the same response 

pattern as the former except that there is an initial decrease in displacement. Decreasing contact 
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time and increasing impact force showed the reverse behaviour of increasing impact time and 

decreasing force. 

 

Results also reveal that increasing both the impact force and contact time initially increased the 

strain and effective stress, and decreased thereafter before steeply increasing up to a constant 

peak values. Increasing contact time and decreasing impact force showed a waveform pattern 

before finally increasing up to a constant peak value of the effective strain and effective stress. 

The reverse of the graph behaviour is seen when decreasing impact time and increasing force. 

 

5.6 Impact Analysis with LS DYNA 

The modelling of the Flex-Run was carried out in Solid Edge ST 5, imported into LS PrePost 

and automatically meshed while LS DYNA performed the solution. The Flex-Run material is 

carbon-fibre-reinforced polymer with average density of 1740 𝑘𝑔/𝑚3 and Young’s modulus of 

72 𝐺𝑃𝑎 while the target surface is idealized as turf made from medium density polypropylene 

with average density of 980 kg/m3 and Young’s modulus of 1.8 𝐺𝑃𝑎. In the implementation of 

the material properties, the Ogden model was used.  Poisson ratio 𝜈 and Ogden exponents 𝛼𝑝 

values of 0.4995 and 2 were used which reduces the Ogden model to the nearly incompressible 

hyperelastic model when the summation limit 𝑛 = 1.  The entire finite element model was built 

with the necessary boundary conditions. The kinetic energy, strain, stress and displacement 

histories as well as the resultant velocity response characteristics of the Flex-Run were shown 

at different impacting velocities. 

 

From the simulation results in Fig. 5.51, it was found that the effective strain shows a shifted 

step response, stabilizing to different constant strain values at different impacting velocities. 
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Fig. 5.51: Effective strain response of the Flex-Run at different impacting velocities 

 

 

The minimum stability point is at 10 m/s and 15 m/s impacting velocities while the maximum 

point is at 20 m/s impacting velocity. The middle value lies when the impacting velocity is 5 

m/s. This displays a non-proportionality relation of the impacting velocity with effective strain. 

 

 
Fig. 5.52: Effective stress responses of the Flex-Run at different impacting velocities 
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The responses of the effective stress in Fig. 5.52 show an exponentially increasing triangular 

waveform observable within a time range. The same behaviour is observable for 5 m/s, 10 m/s 

and 15 m/s impacting velocities while the 20 m/s impacting velocity shows a higher stress 

level.  

 

The kinetic energy responses in Fig. 5.53 for the different impacting velocities show a step 

function. The same behaviour is observable for all impacting velocities except for 10 m/s where 

the kinetic energy has a lower constant value. 

 
 

Fig. 5.53: Kinetic Energy responses of the Flex-Run at different impacting velocities 

 

 

By comparing the displacement time histories between the transient analysis results using the 

different impacting velocities in Fig. 5.54, an exponentially increasing triangular waveform 

was found.  
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Fig. 5.54:  Resultant displacement responses of the Flex-Run at different impacting 

velocities 

 

5.7 Computational Algorithm 

5.7.1 AceGEN Procedure 

AceGen procedure for generating code to work in finite element environment consists of 

several steps:  

Step 1 – Initialization 

 Read of AceGEN code generator 

<<"AceGEN";
 

 Select the working environment  

 

 

 Select the type of finite element (Q1- 2D four node finite element) 

SMSTemplate["SMSTopology"  "Q1",

"SMSSymmetricTangent" True]




 



SMSInitialize ["CompliantMechanism", 

"Environment"  "AceFEM"] 
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Step 2 – Definition of user subroutine 

SMSStandardModule["Tangent and residual"];  

 Definition of input-output variables 

 Kinematics of the selected type of finite element 

 Definition of test function 

 Definition of governing equations 

 Definition of Jacobian matrix 

 Definition of stiffness matrix 

Step 3 – Definition of output variables using subroutine for postprocessing 

SMSStandardModule["Postprocessing"];  

Step 4 – Generation of code 

SMSWrite[];  

 

5.7.2 AceFEM Procedure 

Standard AceFEM procedure consists two basic phase.  

1. Phase Data Entry  

 phase starts with SMTInputData[]  

 description of the material model of finite element  SMTAddDomain defined by code 

which must be generated before analysis  

 mesh generating  

InputData,SMTAddElement  

 setting boundary conditions  

SMTAddEssentialBoundary  

 setting loads  

SMTAddNaturalBoundary  
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2. Phase analysis  

 phase starts with 𝑆𝑀𝑇𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠  

 solution procedures are executed by the user enters inputs  SMTConvergence  

 solving problem by standard Newton-Raphson iterative method 

 postprocessing of results as part of analysis  

SMTShowMesh or later independently of the analysis SMTPut  
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6 

 SUMMARY OF FINDINGS, CONCLUSION, 

CONTRIBUTION TO KNOWLEDGE AND 

FUTURE WORK 

6.1 Summary of Findings 

The deformation analysis of a continuum compliant mechanisms has been presented. 

The summary of findings is hereby presented. 

 

Table 6.1: Summary of Findings 

 

 

Objectives 

 

Findings 

1) To develop a model that can 

adequately capture the effect of 

geometric and material 

nonlinearities to the analysis of 

CMs. 

The model that can be used to analyze the finite 

deformation behaviour and characteristics of CMs 

has been developed. 

2) To investigate the combined effect 

of geometric and material 

nonlinearities in the analysis of 

CM. 

i) It was established that the hyperelasticity 

model is correct more than 95% confidence 

level with the experimental results. 

ii) It was established that geometric nonlinear or 

even linear assumptions could capture the 
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output displacement of CM when the input 

load or displacement is 20% of the total input. 

iii) It was established that the stress history did 

not give tolerance for either linear or 

geometric nonlinear assumptions. 

iv) End point effect in the dynamic analysis of 

CM show that neglecting material 

nonlinearity could lead to failure. 

3) To investigate the influence of 

shear deformation in the nonlinear 

analysis of  CMs 

It was established that after 50% of the maximum 

input force, neglecting the effect of shear stress 

will lead to incorrect and misleading results when 

the deflection of CM is large.   

4)  To develop a mathematical model 

for the fatigue failure prediction of 

polymeric CMs at any strain cycle. 

i) It was established that linear constitutive 

assumption is inappropriate for polymeric 

CMs. 

ii) It was established that for strain amplitude 

lower than 0.100mm/mm, the developed 

model is more appropriate to predict the 

fatigue life of polymeric CMs than other 

models. 

iii) It was established that the critical value of the 

micorcracks and microvoids of a polymeric 

compliant material start at 7.51% of the initial 

cross sectional area. 
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6.2 Conclusion 

New methodologies for the analysis and fatigue failure prediction of compliant 

mechanisms has been presented. The study has shown that the choice of either linear or 

geometric nonlinear analysis is reliable to a certain extent in the deformation behaviour 

of compliant mechanisms. While geometric nonlinear or even linear model could 

capture the CM deformation behaviour when input load or displacement is relatively 

small, results obtained have shown that for large input load or displacement, the only 

reliable result is that from hyperelasticity. To avoid catastrophic failure of CMs, 

especially in mission critical systems, a proper understanding of the deformation 

behaviour is necessary. The results of this work will help the developers of CMs to 

incorporate appropriate sensor based indicators capable of predicting the accurate 

deformation limits and fatigue life which can guide the users of such systems to 

understand the deformation and fatigue behaviour of the compliant mechanism. 

 

6.3 Contributions to Knowledge 

The research work has made some significant contributions in computational 

mechanics and compliant systems. 

i) This study developed a model that can be used for both dynamic and static 

analyses of CMs with geometric and material nonlinear behaviour. 

ii) This work established the threshold input displacement for geometric nonlinear 

and linear deformation assumptions for CMs undergoing finite deformation and 

the onset of shear deformation for CMs undergoing large deflection. 

iii) This study developed an improved model for fatigue life prediction of polymeric 

continuum CMs.  
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iv) This study established the critical value of the damage variable for polymeric 

continuum compliant material.  

 

6.4 Recommendation 

Some recommendations for further improving the computational models are 

summarized as follows: 

 The fatigue and deformation behaviour of compliant materials with changes in 

weather and environmental conditions need to be investigated. 

 The model should be extended to compliant polymeric materials that undergo 

viscous response using viscoelastic models. 

 There is need to model compliant mechanisms that undergo plastic deformation 

using elastoplastic models. 
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B-1 

 A 
APPENDIX A: HYPERELASTICITY AceGEN CODE GENERATION   

/******************************************************** 

 

* AceGen    5.002 Windows (8 Mar 13)                         

* 

*           Co. J. Korelc  2007            10 May 13 

15:43:38* 

********************************************************* 

 

User    :  Full professional version 

Notebook:  Compliant Mechanisms Deformation Code 

(with both Nonlinearities).nb 

Evaluation time : 5 s      

Mode     : Optimal 

Number of formulae  : 207     

Method       : Automatic 

Subroutine      : SKR size :1679 

Subroutine          : SPP size :1074 

Total size of Mathematica code : 2753 subexpressions 

Total size of C code          : 8864 bytes*/  

#include "sms.h" 

  

void SKR(double v[6385],ElementSpec *es,ElementData 

*ed,NodeSpec **ns,NodeData **nd,double *rdata,int 

*idata,double *p,double **s); 

void SPP(double v[6385],ElementSpec *es,ElementData 

*ed,NodeSpec **ns,NodeData **nd,double *rdata,int 

*idata,double **gpost,double **npost); 

int MMAInitialisationCode[]={ 

0,0 

}; 

DLLEXPORT int SMTSetElSpec(ElementSpec *es,int *idata,int 

ic,int ng) 



 

Appendix A: Hyperelasticity  AceGEN Code Generation 

 

A-2 

 

{ int intc,nd,i;FILE *SMSFile; 

  static int pn[11]={1, 2, 3, 4, 0, 1, 2, 3, 4, -1, 0}; 

  static int dof[4]={2, 2, 2, 2}; 

  static int nsto[4]={0, 0, 0, 0}; 

  static int ndat[4]; 

  static char *nid[]={"D","D","D","D"}; 

  static char *gdcs[]={"E -elastic modulus","$[Nu]$ -

Poisson ratio","t -thickness"}; 

  static double defd[]={21000e0,0.3e0,1e0,0e0}; 

  static char 

*gpcs[]={"$[Sigma]$xx","$[Sigma]$xy","$[Sigma]$yx","$[Sig

ma]$yy","$[Sigma]$zz","Exx", 

                       "Exy","Eyx","Eyy","Ezz","Mises 

stress"}; 

  static char 

*npcs[]={"DeformedMeshX","DeformedMeshY","u","v"}; 

  static char *sname[]={"E -elastic modulus","$[Nu]$ -

Poisson ratio"}; 

  static char *idname[]={""}; 

  static int idindex[1]; 

  static char *rdname[]={""}; 

  static char *cswitch[]={""}; 

  static int iswitch[1]={0}; 

  static double dswitch[2]={0.1e-7,0e0}; 

  static int rdindex[1]; 
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  static int nspecs[4]; 

  static double version[3]={5.002,5.002,9.}; 

  static double pnweights[4]={1e0,1e0,1e0,1e0}; 

  static double rnodes[12]={-1e0,-1e0,0e0,1e0,-1e0,0e0, 

  1e0,1e0,0e0,-1e0,1e0,0e0}; 

  es->ReferenceNodes=rnodes; 

  if(ng==-1) es->Data=defd; 

  es->id.NoGroupData=3; 

  es->Code="CMsWithHyperelasticity ";es->Version=version; 

  es->MainTitle=""; 

  es->SubTitle=""; 

  es-

>SubSubTitle="$bold$Postprocessing$bold$:$n2$$[Sigma]$ij 

- small stress tensor$n2$Eij - small strain 

tensor$nl$$bold$Real type domain 

switches$bold$:$b1$SMTDomainData[dID,$Ap$DoubleSwitch$Ap$

,{$b2$1) tolerance for convergence of locally coupled 

equations (default 10^-8)$b1$}]."; 

  es->Bibliography=""; 

  es->id.NoDimensions=2;es->id.NoDOFGlobal=8;es-

>id.NoDOFCondense=0;es->id.NoNodes=4; 

  es->id.NoSegmentPoints=10;es->Segments=pn;es-

>PostNodeWeights=pnweights; 

  es->id.NoIntSwitch=0;es->IntSwitch=iswitch;es-

>id.DemoLimitation=0; 
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  es->id.NoDoubleSwitch=1;es->DoubleSwitch=dswitch; 

  es->id.NoCharSwitch=0;es->CharSwitch=cswitch; 

  es->DOFGlobal=dof;es->NodeID=nid;es-

>id.NoGPostData=11;es->id.NoNPostData=4; 

  es->id.SymmetricTangent=1;es->id.CreateDummyNodes=0;es-

>id.PostIterationCall=1;es->id.DOFScaling=0; 

  es->Topology="Q1";es->GroupDataNames=gdcs;es-

>GPostNames=gpcs;es->NPostNames=npcs; 

  es->AdditionalNodes="{}&"; 

  es->AdditionalGraphics="{}&"; 

  es->MMAInitialisation=MMAInitialisationCode; 

  es->MMANextStep=""; 

  es->MMAStepBack=""; 

  es->MMAPreIteration=""; 

  es->IDataNames=idname;es->IDataIndex=idindex;es-

>RDataNames=rdname;es->RDataIndex=rdindex; 

  es->id.NoIData=0;es->id.NoRData=0; 

  es->id.ShapeSensitivity=0;es->id.NoSensNames=2;es-

>SensitivityNames=sname;es->NodeSpecs=nspecs; 

  es->user.SPP=SPP;es->user.SKR=SKR; 

  es->id.DefaultIntegrationCode=2; 

  if(ic==-1){intc=2;} else {intc=ic;}; 

  es->id.IntCode=intc; 

  SMTMultiIntPoints(&intc,idata,&es->id.NoIntPoints, 



 

Appendix A: Hyperelasticity  AceGEN Code Generation 

 

A-5 

 

      &es->id.NoIntPointsA,&es->id.NoIntPointsB,&es-

>id.NoIntPointsC,0); 

  es->id.NoAdditionalData=(int)(0); 

  es->id.NoTimeStorage=(int)((int)(es->id.NoIntPoints)); 

  es->id.NoElementData=(int)(0); 

  nd=(int)(es-

>id.NoDimensions*idata[ID_NoShapeParameters]);for(i=0;i<4

;i++)ndat[i]=nd; 

  es->NoNodeStorage=nsto;es->NoNodeData=ndat; 

  if(1){ 

   return 0; 

  }else{ 

   return 1; 

  }; 

}; 

/******************* S U B R O U T I N E 

*********************/ 

void SKR(double v[6385],ElementSpec *es,ElementData 

*ed,NodeSpec **ns 

     ,NodeData **nd,double *rdata,int *idata,double 

*p,double **s) 

{ 

int 

i1,i2,i94,i121,i122,i140,i154,b85,b86,b88,b111,b113,b130,

b150,b152; 
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FILE *SMSFile; 

v[87]=es->DoubleSwitch[0]; 

b86=idata[ID_SkipTangent]==1e0; 

v[53]=es->Data[2]; 

b85=(int)(idata[ID_SkipResidual])==1 || 

(int)(idata[ID_Iteration])==1; 

v[23]=nd[3]->at[1]; 

v[22]=nd[3]->at[0]; 

v[21]=nd[2]->at[1]; 

v[20]=nd[2]->at[0]; 

v[19]=nd[1]->at[1]; 

v[18]=nd[1]->at[0]; 

v[17]=nd[0]->at[1]; 

v[16]=nd[0]->at[0]; 

v[15]=nd[3]->X[1]; 

v[14]=nd[3]->X[0]; 

v[13]=nd[2]->X[1]; 

v[12]=nd[2]->X[0]; 

v[11]=nd[1]->X[1]; 

v[10]=nd[1]->X[0]; 

v[9]=nd[0]->X[1]; 

v[8]=nd[0]->X[0]; 

v[4]=es->Data[1]; 

v[293]=2e0*v[4]; 

v[6]=1e0/(1e0+v[4]); 
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v[3]=es->Data[0]; 

v[7]=(v[3]*v[6])/2e0; 

v[104]=((2e0/3e0)+v[293]/(1e0-v[293]))*v[7]; 

i1=(int)(es->id.NoIntPoints); 

for(i2=1;i2<=i1;i2++){ 

 v[29]=es->IntPoints[4*(-1+i2)]; 

 v[38]=1e0-v[29]; 

 v[45]=-v[38]/4e0; 

 v[36]=1e0+v[29]; 

 v[46]=-v[36]/4e0; 

 v[30]=es->IntPoints[1+4*(-1+i2)]; 

 v[39]=1e0+v[30]; 

 v[47]=v[39]/4e0; 

 v[34]=1e0-v[30]; 

 v[44]=-v[34]/4e0; 

 v[48]=(v[12]-v[14])*v[47]+v[44]*(-v[10]+v[8]); 

 v[49]=(v[13]-v[15])*v[47]+v[44]*(-v[11]+v[9]); 

 v[50]=(v[10]-v[12])*v[46]+v[45]*(-v[14]+v[8]); 

 v[51]=(v[11]-v[13])*v[46]+v[45]*(-v[15]+v[9]); 

 v[52]=-(v[49]*v[50])+v[48]*v[51]; 

 v[54]=v[51]/v[52]; 

 v[72]=v[47]*v[54]; 

 v[64]=v[44]*v[54]; 

 v[55]=-(v[50]/v[52]); 

 v[75]=v[47]*v[55]; 
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 v[66]=v[44]*v[55]; 

 v[56]=-(v[49]/v[52]); 

 v[73]=v[45]*v[56]; 

 v[68]=v[46]*v[56]; 

 v[57]=v[48]/v[52]; 

 v[76]=v[45]*v[57]; 

 v[70]=v[46]*v[57]; 

 v[62]=v[64]+v[73]; 

 v[63]=v[66]+v[76]; 

 v[65]=-v[64]+v[68]; 

 v[67]=-v[66]+v[70]; 

 v[69]=-v[68]+v[72]; 

 v[71]=-v[70]+v[75]; 

 v[74]=-v[72]-v[73]; 

 v[6360]=0e0; 

 v[6361]=v[62]; 

 v[6362]=0e0; 

 v[6363]=v[65]; 

 v[6364]=0e0; 

 v[6365]=v[69]; 

 v[6366]=0e0; 

 v[6367]=v[74]; 

 v[6344]=v[62]; 

 v[6345]=0e0; 

 v[6346]=v[65]; 
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 v[6347]=0e0; 

 v[6348]=v[69]; 

 v[6349]=0e0; 

 v[6350]=v[74]; 

 v[6351]=0e0; 

 v[77]=-v[75]-v[76]; 

 v[6368]=0e0; 

 v[6369]=v[63]; 

 v[6370]=0e0; 

 v[6371]=v[67]; 

 v[6372]=0e0; 

 v[6373]=v[71]; 

 v[6374]=0e0; 

 v[6375]=v[77]; 

 v[6352]=v[63]; 

 v[6353]=0e0; 

 v[6354]=v[67]; 

 v[6355]=0e0; 

 v[6356]=v[71]; 

 v[6357]=0e0; 

 v[6358]=v[77]; 

 v[6359]=0e0; 

 v[82]=es->IntPoints[(-1+4*i2)]*v[52]*v[53]; 

 if(b85){ 

  v[89]=ed->ht[i2-1]; 
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 } else { 

  v[89]=ed->hp[i2-1]; 

 }; 

 

v[90]=1e0+v[16]*v[62]+v[18]*v[65]+v[20]*v[69]+v[22]*v[74]

; 

 v[91]=v[16]*v[63]+v[18]*v[67]+v[20]*v[71]+v[22]*v[77]; 

 v[92]=v[17]*v[62]+v[19]*v[65]+v[21]*v[69]+v[23]*v[74]; 

 

v[93]=1e0+v[17]*v[63]+v[19]*v[67]+v[21]*v[71]+v[23]*v[77]

; 

 v[102]=-(v[91]*v[92])+v[90]*v[93]; 

 v[294]=v[102]*v[104]; 

 v[107]=(v[102]*v[102])*v[104]+v[7]; 

 for(i94=1;i94<=30;i94++){ 

  v[95]=1e0+v[89]; 

  v[105]=-1e0+v[102]*v[95]; 

  v[109]=-((v[105]*v[294]+v[7]*v[95])/v[107]); 

  v[89]=v[109]+v[89]; 

  if(sqrt(Power(v[109],2))<v[87] || b85){ 

   ed->ht[i2-1]=v[89]; 

   if(!(b86)){ 

    v[115]=v[294]*v[95]; 

    v[296]=-(v[104]*v[105])-v[115]; 

    v[119]=v[295]; 
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    v[6308]=v[296]*v[93]; 

    v[6309]=-(v[296]*v[92]); 

    v[6310]=-(v[296]*v[91]); 

    v[6311]=v[296]*v[90]; 

    v[120]=v[297]; 

    for(i121=1;i121<=4;i121++){ 

     i122=-1+i121; 

     v[6312+i122]=v[6308+i122]/v[107]; 

    };/* end for */ 

    v[125]=v[6312]; 

    v[126]=v[6313]; 

    v[127]=v[6314]; 

    v[128]=v[6315]; 

   } else { 

   }; 

   break; 

  } else { 

  }; 

  if(i94==29){ 

   idata[ID_SubDivergence]=1e0; 

   idata[ID_ErrorStatus]=2e0; 

   if(idata[ID_NoMessages]<idata[ID_MaxMessages]){ 

   ++idata[ID_NoMessages]; 
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   if(strcmp(es-

>OutFileName,"NONE")!=0){SMSFile=fopen(es-

>OutFileName,"a");if(SMSFile!=NULL){ 

   fprintf(SMSFile,"\n%s %g %s %g ","SUB-DIVERGENCE 

element=",(double)idata[ID_CurrentElement] 

    ,"int. point=",(double)i2); 

   fclose(SMSFile);};} 

   }; 

   break; 

  } else { 

  }; 

 };/* end for */ 

 v[135]=1e0+v[89]; 

 v[303]=v[102]*v[135]; 

 v[136]=(v[135]*v[135]); 

 v[142]=-1e0+v[303]; 

 v[144]=v[104]*v[135]*v[142]; 

 v[143]=v[144]*v[90]+v[7]*v[93]; 

 v[145]=-(v[144]*v[91])+v[7]*v[92]; 

 v[146]=v[7]*v[91]-v[144]*v[92]; 

 v[147]=v[7]*v[90]+v[144]*v[93]; 

 v[6332]=v[147]*v[62]+v[146]*v[63]; 

 v[6333]=v[145]*v[62]+v[143]*v[63]; 

 v[6334]=v[147]*v[65]+v[146]*v[67]; 

 v[6335]=v[145]*v[65]+v[143]*v[67]; 
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 v[6336]=v[147]*v[69]+v[146]*v[71]; 

 v[6337]=v[145]*v[69]+v[143]*v[71]; 

 v[6338]=v[147]*v[74]+v[146]*v[77]; 

 v[6339]=v[145]*v[74]+v[143]*v[77]; 

 for(i140=1;i140<=8;i140++){ 

  v[157]=v[6343+i140]*v[82]; 

  v[158]=v[6351+i140]*v[82]; 

  v[159]=v[6359+i140]*v[82]; 

  v[160]=v[6367+i140]*v[82]; 

  v[161]=v[160]*v[90]-v[159]*v[91]-

v[158]*v[92]+v[157]*v[93]; 

  v[302]=v[104]*v[161]; 

  v[164]=v[136]*v[302]; 

  v[162]=v[302]*(v[142]+v[303]); 

  

v[163]=v[144]*v[157]+v[128]*v[162]+v[160]*v[7]+v[164]*v[9

0]; 

  v[165]=-(v[144]*v[158])+v[127]*v[162]+v[159]*v[7]-

v[164]*v[91]; 

  v[166]=-(v[144]*v[159])+v[126]*v[162]+v[158]*v[7]-

v[164]*v[92]; 

  

v[167]=v[144]*v[160]+v[125]*v[162]+v[157]*v[7]+v[164]*v[9

3]; 

  v[6376]=v[167]*v[62]+v[166]*v[63]; 
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  v[6377]=v[165]*v[62]+v[163]*v[63]; 

  v[6378]=v[167]*v[65]+v[166]*v[67]; 

  v[6379]=v[165]*v[65]+v[163]*v[67]; 

  v[6380]=v[167]*v[69]+v[166]*v[71]; 

  v[6381]=v[165]*v[69]+v[163]*v[71]; 

  v[6382]=v[167]*v[74]+v[166]*v[77]; 

  v[6383]=v[165]*v[74]+v[163]*v[77]; 

  if((int)(idata[ID_SkipResidual])==0){ 

   p[i140-1]+=v[6331+i140]*v[82]; 

  } else { 

  }; 

  if(b86){ 

   continue; 

  } else { 

  }; 

  for(i154=i140;i154<=8;i154++){ 

   s[i140-1][i154-1]+=v[6375+i154]; 

  };/* end for */ 

 };/* end for */ 

};/* end for */ 

}; 

/******************* S U B R O U T I N E 

*********************/ 

void SPP(double v[6385],ElementSpec *es,ElementData 

*ed,NodeSpec **ns 
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     ,NodeData **nd,double *rdata,int *idata,double 

**gpost,double **npost) 

{ 

int i170,i171; 

FILE *SMSFile; 

v[192]=nd[3]->at[1]; 

v[191]=nd[3]->at[0]; 

v[190]=nd[2]->at[1]; 

v[189]=nd[2]->at[0]; 

v[188]=nd[1]->at[1]; 

v[187]=nd[1]->at[0]; 

v[186]=nd[0]->at[1]; 

v[185]=nd[0]->at[0]; 

v[184]=nd[3]->X[1]; 

v[183]=nd[3]->X[0]; 

v[182]=nd[2]->X[1]; 

v[181]=nd[2]->X[0]; 

v[180]=nd[1]->X[1]; 

v[179]=nd[1]->X[0]; 

v[178]=nd[0]->X[1]; 

v[177]=nd[0]->X[0]; 

v[173]=es->Data[1]; 

v[304]=2e0*v[173]; 

v[175]=1e0/(1e0+v[173]); 

v[172]=es->Data[0]; 
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v[176]=(v[172]*v[175])/2e0; 

v[279]=v[176]*((2e0/3e0)+v[304]/(1e0-v[304])); 

i170=(int)(es->id.NoIntPoints); 

for(i171=1;i171<=i170;i171++){ 

 v[198]=es->IntPoints[4*(-1+i171)]; 

 v[207]=1e0-v[198]; 

 v[214]=-v[207]/4e0; 

 v[205]=1e0+v[198]; 

 v[215]=-v[205]/4e0; 

 v[199]=es->IntPoints[1+4*(-1+i171)]; 

 v[208]=1e0+v[199]; 

 v[216]=v[208]/4e0; 

 v[203]=1e0-v[199]; 

 v[213]=-v[203]/4e0; 

 v[217]=(v[177]-v[179])*v[213]+(v[181]-v[183])*v[216]; 

 v[218]=(v[178]-v[180])*v[213]+(v[182]-v[184])*v[216]; 

 v[219]=(v[177]-v[183])*v[214]+(v[179]-v[181])*v[215]; 

 v[220]=(v[178]-v[184])*v[214]+(v[180]-v[182])*v[215]; 

 v[221]=-(v[218]*v[219])+v[217]*v[220]; 

 v[223]=v[220]/v[221]; 

 v[241]=v[216]*v[223]; 

 v[233]=v[213]*v[223]; 

 v[224]=-(v[219]/v[221]); 

 v[244]=v[216]*v[224]; 

 v[235]=v[213]*v[224]; 
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 v[225]=-(v[218]/v[221]); 

 v[242]=v[214]*v[225]; 

 v[237]=v[215]*v[225]; 

 v[226]=v[217]/v[221]; 

 v[245]=v[214]*v[226]; 

 v[239]=v[215]*v[226]; 

 v[231]=v[233]+v[242]; 

 v[232]=v[235]+v[245]; 

 v[234]=-v[233]+v[237]; 

 v[236]=-v[235]+v[239]; 

 v[238]=-v[237]+v[241]; 

 v[240]=-v[239]+v[244]; 

 v[243]=-v[241]-v[242]; 

 v[246]=-v[244]-v[245]; 

 

v[254]=1e0+v[185]*v[231]+v[187]*v[234]+v[189]*v[238]+v[19

1]*v[243]; 

 

v[255]=v[185]*v[232]+v[187]*v[236]+v[189]*v[240]+v[191]*v

[246]; 

 

v[256]=v[186]*v[231]+v[188]*v[234]+v[190]*v[238]+v[192]*v

[243]; 

 v[307]=(v[256]*v[256]); 
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v[257]=1e0+v[186]*v[232]+v[188]*v[236]+v[190]*v[240]+v[19

2]*v[246]; 

 v[308]=(v[257]*v[257]); 

 v[277]=-(v[255]*v[256])+v[254]*v[257]; 

 v[258]=1e0+ed->ht[i171-1]; 

 v[263]=v[258]*v[277]; 

 v[280]=-1e0+v[263]; 

 v[306]=v[279]*v[280]; 

 v[305]=v[258]*v[306]; 

 v[266]=(v[254]*v[255]+v[256]*v[257])/2e0; 

 v[281]=v[176]*v[254]+v[257]*v[305]; 

 v[282]=v[176]*v[255]-v[256]*v[305]; 

 v[286]=(v[254]*v[281]+v[255]*v[282])/v[263]; 

 v[287]=(v[256]*v[281]+v[257]*v[282])/v[263]; 

 v[288]=(v[277]*v[305]+v[176]*(v[307]+v[308]))/v[263]; 

 v[289]=(v[258]*(v[176]*v[258]+v[277]*v[306]))/v[263]; 

 v[290]=(-v[286]-v[288]-v[289])/3e0; 

 gpost[i171-1][0]=v[286]; 

 gpost[i171-1][1]=v[287]; 

 gpost[i171-1][2]=v[287]; 

 gpost[i171-1][3]=v[288]; 

 gpost[i171-1][4]=v[289]; 

 gpost[i171-1][5]=(-1e0+(v[254]*v[254])+v[307])/2e0; 

 gpost[i171-1][6]=v[266]; 

 gpost[i171-1][7]=v[266]; 
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 gpost[i171-1][8]=(-1e0+(v[255]*v[255])+v[308])/2e0; 

 gpost[i171-1][9]=(-1e0+(v[258]*v[258]))/2e0; 

 gpost[i171-

1][10]=sqrt(0.15e1*(2e0*Power(v[287],2)+Power(v[286]+v[29

0],2)+Power(v[288]+v[290],2) 

  +Power(v[289]+v[290],2))); 

};/* end for */ 

npost[0][0]=v[185]; 

npost[1][0]=v[187]; 

npost[2][0]=v[189]; 

npost[3][0]=v[191]; 

npost[0][1]=v[186]; 

npost[1][1]=v[188]; 

npost[2][1]=v[190]; 

npost[3][1]=v[192]; 

npost[0][2]=v[185]; 

npost[1][2]=v[187]; 

npost[2][2]=v[189]; 

npost[3][2]=v[191]; 

npost[0][3]=v[186]; 

npost[1][3]=v[188]; 

npost[2][3]=v[190]; 

npost[3][3]=v[192];}
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 B 
APPENDIX B: GEOMETRIC NONLINEAR MODEL AceGEN CODE 

GENARATION 

/******************************************************** 

 

* AceGen    5.002 Windows (8 Mar 13)                         

* 

*           Co. J. Korelc  2007            10 May 13 

15:40:49* 

********************************************************* 

 

User     : Full professional version 

Notebook : Compliant Mechanisms Deformation Code (with   

only Geometric Nonlinear).nb 

Evaluation time       : 8 s      

Mode       : Optimal 

Number of formulae    : 365      

Method         : Automatic 

Subroutine            : SKR size :1457 

Subroutine            : SSE size :2315 

Subroutine            : SPP size :962 

Total size of Mathematica  code : 4734 subexpressions 

Total size of C code            : 14052 bytes*/ 

#include "sms.h" 

 

void SKR(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns,NodeData **nd,double *rdata,int 

*idata,double *p,double **s); 

void SSE(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns,NodeData **nd,double *rdata,int 

*idata,double *p); 

void SPP(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns,NodeData **nd,double *rdata,int 

*idata,double **gpost,double **npost); 

 



 

Appendix B: Geometric Nonlinear Model AceGEN Code Generation 

 

B-2 

 

int MMAInitialisationCode[]={ 

0,0 

}; 

DLLEXPORT int SMTSetElSpec(ElementSpec *es,int *idata,int 

ic,int ng) 

{ int intc,nd,i;FILE *SMSFile; 

  static int pn[11]={1, 2, 3, 4, 0, 1, 2, 3, 4, -1, 0}; 

  static int dof[4]={2, 2, 2, 2}; 

  static int nsto[4]={0, 0, 0, 0}; 

  static int ndat[4]; 

  static char *nid[]={"D","D","D","D"}; 

  static char *gdcs[]={"E -elastic modulus","$[Nu]$ -

Poisson ratio","t -thickness"}; 

  static double defd[]={21000e0,0.3e0,1e0,0e0}; 

  static char 

*gpcs[]={"Sxx","Sxy","Syx","Syy","Exx","Exy", 

                       "Eyx","Eyy","Ezz","Mises stress"}; 

  static char 

*npcs[]={"DeformedMeshX","DeformedMeshY","u","v"}; 

  static char *sname[]={"E -elastic modulus","$[Nu]$ -

Poisson ratio"}; 

  static char *idname[]={""}; 

  static int idindex[1]; 

  static char *rdname[]={""}; 

  static char *cswitch[]={""}; 
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  static int iswitch[1]={0}; 

  static double dswitch[1]={0e0}; 

  static int rdindex[1]; 

  static int nspecs[4]; 

  static double version[3]={5.002,5.002,9.}; 

  static double pnweights[4]={1e0,1e0,1e0,1e0}; 

  static double rnodes[12]={-1e0,-1e0,0e0,1e0,-1e0,0e0, 

  1e0,1e0,0e0,-1e0,1e0,0e0}; 

  es->ReferenceNodes=rnodes; 

  if(ng==-1) es->Data=defd; 

  es->id.NoGroupData=3; 

  es->Code=" CMsWithGNL es->Version=version; 

  es->MainTitle=""; 

  es->SubTitle=""; 

  es->SubSubTitle="$bold$Postprocessing$bold$:$n2$Sij - 

Cauchy stress tensor$n2$Eij - Green-Lagrange strain 

tensor."; 

  es->Bibliography=""; 

  es->id.NoDimensions=2;es->id.NoDOFGlobal=8;es-

>id.NoDOFCondense=0;es->id.NoNodes=4; 

  es->id.NoSegmentPoints=10;es->Segments=pn;es-

>PostNodeWeights=pnweights; 

  es->id.NoIntSwitch=0;es->IntSwitch=iswitch;es-

>id.DemoLimitation=0; 

  es->id.NoDoubleSwitch=0;es->DoubleSwitch=dswitch; 
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  es->id.NoCharSwitch=0;es->CharSwitch=cswitch; 

  es->DOFGlobal=dof;es->NodeID=nid;es-

>id.NoGPostData=10;es->id.NoNPostData=4; 

  es->id.SymmetricTangent=1;es->id.CreateDummyNodes=0;es-

>id.PostIterationCall=0;es->id.DOFScaling=0; 

  es->Topology="Q1";es->GroupDataNames=gdcs;es-

>GPostNames=gpcs;es->NPostNames=npcs; 

  es->AdditionalNodes="{}&"; 

  es->AdditionalGraphics="{}&"; 

  es->MMAInitialisation=MMAInitialisationCode; 

  es->MMANextStep=""; 

  es->MMAStepBack=""; 

  es->MMAPreIteration=""; 

  es->IDataNames=idname;es->IDataIndex=idindex;es-

>RDataNames=rdname;es->RDataIndex=rdindex; 

  es->id.NoIData=0;es->id.NoRData=0; 

  es->id.ShapeSensitivity=1;es->id.NoSensNames=2;es-

>SensitivityNames=sname;es->NodeSpecs=nspecs; 

  es->user.SPP=SPP;es->user.SSE=SSE;es->user.SKR=SKR; 

  es->id.DefaultIntegrationCode=2; 

  if(ic==-1){intc=2;} else {intc=ic;}; 

  es->id.IntCode=intc; 

  SMTMultiIntPoints(&intc,idata,&es->id.NoIntPoints, 

      &es->id.NoIntPointsA,&es->id.NoIntPointsB,&es-

>id.NoIntPointsC,0); 
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  es->id.NoAdditionalData=(int)(0); 

  es->id.NoTimeStorage=(int)(0); 

  es->id.NoElementData=(int)(0); 

  nd=(int)(es-

>id.NoDimensions*idata[ID_NoShapeParameters]);for(i=0;i<4

;i++)ndat[i]=nd; 

  es->NoNodeStorage=nsto;es->NoNodeData=ndat; 

  if(1){ 

   return 0; 

  }else{ 

   return 1; 

  }; 

}; 

/******************* S U B R O U T I N E 

*********************/ 

void SKR(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns 

     ,NodeData **nd,double *rdata,int *idata,double 

*p,double **s) 

{ 

int i3,i4,i97,i110,b1,b2,b106,b108; 

v[53]=es->Data[2]; 

v[25]=nd[3]->at[1]; 

v[24]=nd[3]->at[0]; 

v[23]=nd[2]->at[1]; 
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v[22]=nd[2]->at[0]; 

v[21]=nd[1]->at[1]; 

v[20]=nd[1]->at[0]; 

v[19]=nd[0]->at[1]; 

v[18]=nd[0]->at[0]; 

v[17]=nd[3]->X[1]; 

v[16]=nd[3]->X[0]; 

v[15]=nd[2]->X[1]; 

v[14]=nd[2]->X[0]; 

v[13]=nd[1]->X[1]; 

v[12]=nd[1]->X[0]; 

v[11]=nd[0]->X[1]; 

v[10]=nd[0]->X[0]; 

v[6]=es->Data[1]; 

v[415]=2e0*v[6]; 

v[8]=1e0/(1e0+v[6]); 

v[5]=es->Data[0]; 

v[9]=(v[5]*v[8])/2e0; 

v[99]=2e0*v[9]; 

v[7]=(v[415]*v[9])/(1e0-v[415]); 

v[128]=2e0*v[7]+v[99]; 

v[89]=v[99]/(v[7]+v[99]); 

v[421]=v[89]/2e0; 

b1=(int)(idata[ID_SkipResidual])==1; 

b2=(int)(idata[ID_SkipTangent])==1; 
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i3=(int)(es->id.NoIntPoints); 

for(i4=1;i4<=i3;i4++){ 

 v[29]=es->IntPoints[4*(-1+i4)]; 

 v[38]=1e0-v[29]; 

 v[45]=-v[38]/4e0; 

 v[36]=1e0+v[29]; 

 v[46]=-v[36]/4e0; 

 v[30]=es->IntPoints[1+4*(-1+i4)]; 

 v[39]=1e0+v[30]; 

 v[47]=v[39]/4e0; 

 v[34]=1e0-v[30]; 

 v[44]=-v[34]/4e0; 

 v[48]=(v[10]-v[12])*v[44]+(v[14]-v[16])*v[47]; 

 v[49]=(v[11]-v[13])*v[44]+(v[15]-v[17])*v[47]; 

 v[50]=(v[10]-v[16])*v[45]+(v[12]-v[14])*v[46]; 

 v[51]=(v[11]-v[17])*v[45]+(v[13]-v[15])*v[46]; 

 v[52]=-(v[49]*v[50])+v[48]*v[51]; 

 v[54]=v[51]/v[52]; 

 v[72]=v[47]*v[54]; 

 v[64]=v[44]*v[54]; 

 v[55]=-(v[50]/v[52]); 

 v[75]=v[47]*v[55]; 

 v[66]=v[44]*v[55]; 

 v[56]=-(v[49]/v[52]); 

 v[73]=v[45]*v[56]; 
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 v[68]=v[46]*v[56]; 

 v[57]=v[48]/v[52]; 

 v[76]=v[45]*v[57]; 

 v[70]=v[46]*v[57]; 

 v[62]=v[64]+v[73]; 

 v[63]=v[66]+v[76]; 

 v[65]=-v[64]+v[68]; 

 v[67]=-v[66]+v[70]; 

 v[69]=-v[68]+v[72]; 

 v[71]=-v[70]+v[75]; 

 v[74]=-v[72]-v[73]; 

 v[4244]=0e0; 

 v[4245]=v[62]; 

 v[4246]=0e0; 

 v[4247]=v[65]; 

 v[4248]=0e0; 

 v[4249]=v[69]; 

 v[4250]=0e0; 

 v[4251]=v[74]; 

 v[4228]=v[62]; 

 v[4229]=0e0; 

 v[4230]=v[65]; 

 v[4231]=0e0; 

 v[4232]=v[69]; 

 v[4233]=0e0; 
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 v[4234]=v[74]; 

 v[4235]=0e0; 

 v[77]=-v[75]-v[76]; 

 v[4252]=v[63]; 

 v[4253]=0e0; 

 v[4254]=v[67]; 

 v[4255]=0e0; 

 v[4256]=v[71]; 

 v[4257]=0e0; 

 v[4258]=v[77]; 

 v[4259]=0e0; 

 v[4236]=0e0; 

 v[4237]=v[63]; 

 v[4238]=0e0; 

 v[4239]=v[67]; 

 v[4240]=0e0; 

 v[4241]=v[71]; 

 v[4242]=0e0; 

 v[4243]=v[77]; 

 v[78]=v[18]*v[62]+v[20]*v[65]+v[22]*v[69]+v[24]*v[74]; 

 v[416]=2e0*v[78]; 

 v[418]=v[416]+(v[78]*v[78]); 

 v[122]=2e0+v[416]; 

 v[423]=v[122]*v[421]; 

 v[79]=v[19]*v[62]+v[21]*v[65]+v[23]*v[69]+v[25]*v[74]; 
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 v[118]=1e0+v[79]; 

 v[80]=v[18]*v[63]+v[20]*v[67]+v[22]*v[71]+v[24]*v[77]; 

 v[117]=1e0+v[80]; 

 v[81]=v[19]*v[63]+v[21]*v[67]+v[23]*v[71]+v[25]*v[77]; 

 v[417]=2e0*v[81]; 

 v[419]=v[417]+(v[81]*v[81]); 

 v[121]=2e0+v[417]; 

 v[425]=v[121]*v[421]; 

 v[82]=es->IntPoints[(-1+4*i4)]*v[52]*v[53]; 

 v[83]=v[418]/2e0; 

 v[84]=(v[79]+v[118]*v[80])/2e0; 

 v[420]=v[84]*v[99]; 

 v[85]=v[419]/2e0; 

 v[126]=v[7]*(v[418]+v[85])+v[83]*v[99]; 

 v[120]=v[7]*(v[419]+v[83])+v[85]*v[99]; 

 v[100]=v[118]*v[420]; 

 v[101]=v[117]*v[420]; 

 v[102]=v[120]*v[425]; 

 v[103]=v[126]*v[423]; 

 v[4216]=v[103]*v[62]+v[100]*v[63]; 

 v[4217]=v[101]*v[62]+v[102]*v[63]; 

 v[4218]=v[103]*v[65]+v[100]*v[67]; 

 v[4219]=v[101]*v[65]+v[102]*v[67]; 

 v[4220]=v[103]*v[69]+v[100]*v[71]; 

 v[4221]=v[101]*v[69]+v[102]*v[71]; 
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 v[4222]=v[103]*v[74]+v[100]*v[77]; 

 v[4223]=v[101]*v[74]+v[102]*v[77]; 

 for(i97=1;i97<=8;i97++){ 

  v[113]=v[4227+i97]*v[82]; 

  v[127]=v[113]*v[423]; 

  v[114]=v[4235+i97]*v[82]; 

  v[129]=v[114]*v[425]; 

  v[115]=v[4243+i97]*v[82]; 

  v[116]=v[4251+i97]*v[82]; 

  v[119]=(v[115]*v[117]+v[116]*v[118])*v[99]; 

  v[428]=v[119]/2e0; 

  

v[123]=(v[121]*(v[128]*v[129]+v[127]*v[7]))/2e0+v[114]*v[

120]*v[89]; 

  v[124]=v[115]*v[420]+v[118]*v[428]; 

  v[125]=v[116]*v[420]+v[117]*v[428]; 

  

v[130]=(v[122]*(v[127]*v[128]+v[129]*v[7]))/2e0+v[113]*v[

126]*v[89]; 

  v[4260]=v[130]*v[62]+v[124]*v[63]; 

  v[4261]=v[125]*v[62]+v[123]*v[63]; 

  v[4262]=v[130]*v[65]+v[124]*v[67]; 

  v[4263]=v[125]*v[65]+v[123]*v[67]; 

  v[4264]=v[130]*v[69]+v[124]*v[71]; 

  v[4265]=v[125]*v[69]+v[123]*v[71]; 
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  v[4266]=v[130]*v[74]+v[124]*v[77]; 

  v[4267]=v[125]*v[74]+v[123]*v[77]; 

  if(!(b1)){ 

   p[i97-1]+=v[4215+i97]*v[82]; 

  } else { 

  }; 

  if(b2){ 

   continue; 

  } else { 

  }; 

  for(i110=i97;i110<=8;i110++){ 

   s[i97-1][i110-1]+=v[4259+i110]; 

  };/* end for */ 

 };/* end for */ 

};/* end for */ 

}; 

/******************* S U B R O U T I N E 

*********************/ 

void SSE(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns 

     ,NodeData **nd,double *rdata,int *idata,double *p) 

{ 

int i133,i134,i135,i137,i138,i242,i245,b159,b244; 

v[223]=es->Data[1]; 

v[261]=1e0-2e0*v[223]; 
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v[440]=1e0/Power(v[261],2); 

v[255]=1e0+v[223]; 

v[437]=1e0/Power(v[255],2); 

v[222]=es->Data[0]; 

v[442]=v[222]*v[261]; 

v[429]=v[222]/v[255]; 

v[260]=v[223]*v[429]; 

v[441]=2e0*v[255]*v[260]; 

v[226]=v[429]/2e0; 

v[224]=v[260]/v[261]; 

v[264]=v[224]+v[429]; 

v[443]=1e0/Power(v[264],2); 

v[233]=(2e0*v[226])/v[264]; 

v[434]=v[233]*v[264]; 

v[192]=es->Data[2]; 

v[154]=nd[3]->at[1]; 

v[153]=nd[3]->at[0]; 

v[152]=nd[2]->at[1]; 

v[151]=nd[2]->at[0]; 

v[150]=nd[1]->at[1]; 

v[149]=nd[1]->at[0]; 

v[148]=nd[0]->at[1]; 

v[147]=nd[0]->at[0]; 

v[146]=nd[3]->X[1]; 

v[145]=nd[3]->X[0]; 
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v[144]=nd[2]->X[1]; 

v[143]=nd[2]->X[0]; 

v[142]=nd[1]->X[1]; 

v[141]=nd[1]->X[0]; 

v[140]=nd[0]->X[1]; 

v[139]=nd[0]->X[0]; 

i133=(int)(idata[ID_SensIndex]); 

i134=(int)(es->SensType[i133-1]); 

i135=(int)(es->SensTypeIndex[i133-1]); 

i137=(int)(es->id.NoIntPoints); 

for(i138=1;i138<=i137;i138++){ 

 if(i134==2){ 

  v[160]=nd[0]->Data[(-1+i135)*idata[ID_NoDimensions]]; 

  v[161]=nd[0]->Data[1+(-1+i135)*idata[ID_NoDimensions]]; 

  v[162]=nd[1]->Data[(-1+i135)*idata[ID_NoDimensions]]; 

  v[163]=nd[1]->Data[1+(-1+i135)*idata[ID_NoDimensions]]; 

  v[164]=nd[2]->Data[(-1+i135)*idata[ID_NoDimensions]]; 

  v[165]=nd[2]->Data[1+(-1+i135)*idata[ID_NoDimensions]]; 

  v[166]=nd[3]->Data[(-1+i135)*idata[ID_NoDimensions]]; 

  v[167]=nd[3]->Data[1+(-1+i135)*idata[ID_NoDimensions]]; 

 } else { 

  v[160]=0e0; 

  v[161]=0e0; 

  v[162]=0e0; 

  v[163]=0e0; 
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  v[164]=0e0; 

  v[165]=0e0; 

  v[166]=0e0; 

  v[167]=0e0; 

 }; 

 v[168]=es->IntPoints[4*(-1+i138)]; 

 v[177]=1e0-v[168]; 

 v[184]=-v[177]/4e0; 

 v[175]=1e0+v[168]; 

 v[185]=-v[175]/4e0; 

 v[169]=es->IntPoints[1+4*(-1+i138)]; 

 v[178]=1e0+v[169]; 

 v[186]=v[178]/4e0; 

 v[173]=1e0-v[169]; 

 v[183]=-v[173]/4e0; 

 v[171]=es->IntPoints[3+4*(-1+i138)]; 

 v[449]=v[171]*v[192]; 

 v[187]=(v[139]-v[141])*v[183]+(v[143]-v[145])*v[186]; 

 v[188]=(v[140]-v[142])*v[183]+(v[144]-v[146])*v[186]; 

 v[189]=(v[139]-v[145])*v[184]+(v[141]-v[143])*v[185]; 

 v[190]=(v[140]-v[146])*v[184]+(v[142]-v[144])*v[185]; 

 v[191]=-(v[188]*v[189])+v[187]*v[190]; 

 v[274]=1e0/Power(v[191],2); 

 v[193]=v[190]/v[191]; 

 v[211]=v[186]*v[193]; 
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 v[203]=v[183]*v[193]; 

 v[194]=-(v[189]/v[191]); 

 v[214]=v[186]*v[194]; 

 v[205]=v[183]*v[194]; 

 v[195]=-(v[188]/v[191]); 

 v[212]=v[184]*v[195]; 

 v[207]=v[185]*v[195]; 

 v[196]=v[187]/v[191]; 

 v[215]=v[184]*v[196]; 

 v[209]=v[185]*v[196]; 

 v[201]=v[203]+v[212]; 

 v[202]=v[205]+v[215]; 

 v[204]=-v[203]+v[207]; 

 v[206]=-v[205]+v[209]; 

 v[208]=-v[207]+v[211]; 

 v[210]=-v[209]+v[214]; 

 v[213]=-v[211]-v[212]; 

 v[216]=-v[214]-v[215]; 

 

v[217]=v[147]*v[201]+v[149]*v[204]+v[151]*v[208]+v[153]*v

[213]; 

 v[430]=2e0*v[217]; 

 v[432]=(v[217]*v[217])+v[430]; 

 v[308]=2e0+v[430]; 

 v[447]=v[308]/2e0; 
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v[218]=v[148]*v[201]+v[150]*v[204]+v[152]*v[208]+v[154]*v

[213]; 

 v[299]=1e0+v[218]; 

 

v[219]=v[147]*v[202]+v[149]*v[206]+v[151]*v[210]+v[153]*v

[216]; 

 v[301]=1e0+v[219]; 

 

v[220]=v[148]*v[202]+v[150]*v[206]+v[152]*v[210]+v[154]*v

[216]; 

 v[431]=2e0*v[220]; 

 v[433]=(v[220]*v[220])+v[431]; 

 v[303]=2e0+v[431]; 

 v[446]=v[303]/2e0; 

 v[221]=v[191]*v[449]; 

 v[227]=v[432]/2e0; 

 v[228]=(v[218]+v[219]*v[299])/2e0; 

 v[435]=v[228]*v[429]; 

 v[229]=v[433]/2e0; 

 v[310]=v[229]+v[432]; 

 v[309]=v[224]*v[310]+v[227]*v[434]; 

 v[305]=v[227]+v[433]; 

 v[304]=v[224]*v[305]+v[229]*v[434]; 

 v[231]=v[233]*v[309]; 
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 v[234]=v[233]*v[304]; 

 v[248]=v[299]*v[435]; 

 v[249]=v[301]*v[435]; 

 v[250]=v[234]*v[446]; 

 v[251]=v[231]*v[447]; 

 v[4222]=v[202]*v[248]+v[201]*v[251]; 

 v[4223]=v[201]*v[249]+v[202]*v[250]; 

 v[4224]=v[206]*v[248]+v[204]*v[251]; 

 v[4225]=v[204]*v[249]+v[206]*v[250]; 

 v[4226]=v[210]*v[248]+v[208]*v[251]; 

 v[4227]=v[208]*v[249]+v[210]*v[250]; 

 v[4228]=v[216]*v[248]+v[213]*v[251]; 

 v[4229]=v[213]*v[249]+v[216]*v[250]; 

 v[241]=v[436]; 

 for(i242=1;i242<=2;i242++){ 

  v[4203+i242]=0e0; 

 };/* end for */ 

 v[243]=v[241]; 

 if(i134==1){ 

  v[4203+i135]=1e0; 

 } else { 

 }; 

 v[254]=v[4205]; 

 v[256]=-(v[254]*v[437]); 

 v[439]=v[222]*v[256]; 
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 v[257]=v[4204]; 

 v[438]=v[257]/v[255]+v[439]; 

 v[258]=v[438]/2e0; 

 v[448]=2e0*v[258]; 

 

v[263]=(v[440]*(v[223]*v[261]*(v[257]+v[255]*v[439])+v[25

4]*(v[441]+v[442])))/v[255]; 

 v[265]=-2e0*(-

(v[258]*v[264])+v[226]*(v[263]+v[438]))*v[443]; 

 v[266]=(v[160]-v[162])*v[183]+(v[164]-v[166])*v[186]; 

 v[267]=(v[161]-v[163])*v[183]+(v[165]-v[167])*v[186]; 

 v[268]=(v[160]-v[166])*v[184]+(v[162]-v[164])*v[185]; 

 v[269]=(v[161]-v[167])*v[184]+(v[163]-v[165])*v[185]; 

 v[270]=v[190]*v[266]-v[189]*v[267]-

v[188]*v[268]+v[187]*v[269]; 

 v[444]=v[270]*v[274]; 

 v[271]=v[269]/v[191]-v[190]*v[444]; 

 v[272]=v[186]*v[271]; 

 v[273]=v[183]*v[271]; 

 v[275]=-(v[268]/v[191])+v[189]*v[444]; 

 v[276]=v[186]*v[275]; 

 v[277]=v[183]*v[275]; 

 v[278]=-(v[267]/v[191])+v[188]*v[444]; 

 v[279]=v[184]*v[278]; 

 v[280]=v[185]*v[278]; 
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 v[281]=v[266]/v[191]-v[187]*v[444]; 

 v[282]=v[184]*v[281]; 

 v[283]=v[185]*v[281]; 

 v[284]=v[273]+v[279]; 

 v[285]=v[277]+v[282]; 

 v[286]=-v[273]+v[280]; 

 v[287]=-v[277]+v[283]; 

 v[288]=v[272]-v[280]; 

 v[289]=v[276]-v[283]; 

 v[290]=-v[272]-v[279]; 

 v[291]=-v[276]-v[282]; 

 

v[292]=v[147]*v[284]+v[149]*v[286]+v[151]*v[288]+v[153]*v

[290]; 

 v[311]=2e0*(1e0+v[217])*v[292]; 

 

v[293]=v[148]*v[284]+v[150]*v[286]+v[152]*v[288]+v[154]*v

[290]; 

 

v[294]=v[147]*v[285]+v[149]*v[287]+v[151]*v[289]+v[153]*v

[291]; 

 

v[295]=v[148]*v[285]+v[150]*v[287]+v[152]*v[289]+v[154]*v

[291]; 

 v[306]=2e0*(1e0+v[220])*v[295]; 
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 v[296]=v[311]/2e0; 

 v[297]=(v[294]*v[299]+v[293]*v[301])/2e0; 

 v[445]=v[297]*v[429]+v[228]*v[438]; 

 v[298]=v[306]/2e0; 

 v[300]=v[293]*v[435]+v[299]*v[445]; 

 v[302]=v[294]*v[435]+v[301]*v[445]; 

v[307]=v[234]*v[295]+v[446]*(v[265]*v[304]+v[233]*(v[263]

*v[305]+v[224]*(v[296]+v[306]) 

  +v[298]*v[434]+v[229]*v[448])); 

v[312]=v[231]*v[292]+v[447]*(v[265]*v[309]+v[233]*(v[263]

*v[310]+v[224]*(v[298]+v[311]) 

  +v[296]*v[434]+v[227]*v[448])); 

 

v[4230]=v[251]*v[284]+v[248]*v[285]+v[202]*v[300]+v[201]*

v[312]; 

 

v[4231]=v[249]*v[284]+v[250]*v[285]+v[201]*v[302]+v[202]*

v[307]; 

 

v[4232]=v[251]*v[286]+v[248]*v[287]+v[206]*v[300]+v[204]*

v[312]; 

 

v[4233]=v[249]*v[286]+v[250]*v[287]+v[204]*v[302]+v[206]*

v[307]; 
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v[4234]=v[251]*v[288]+v[248]*v[289]+v[210]*v[300]+v[208]*

v[312]; 

 

v[4235]=v[249]*v[288]+v[250]*v[289]+v[208]*v[302]+v[210]*

v[307]; 

 

v[4236]=v[251]*v[290]+v[248]*v[291]+v[216]*v[300]+v[213]*

v[312]; 

 

v[4237]=v[249]*v[290]+v[250]*v[291]+v[213]*v[302]+v[216]*

v[307]; 

 for(i245=1;i245<=8;i245++){ 

  p[i245-

1]+=v[221]*v[4229+i245]+v[270]*v[4221+i245]*v[449]; 

 };/* end for */ 

};/* end for */ 

}; 

/******************* S U B R O U T I N E 

*********************/ 

void SPP(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns 

     ,NodeData **nd,double *rdata,int *idata,double 

**gpost,double **npost) 

{ 
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int i317,i318; 

v[339]=nd[3]->at[1]; 

v[338]=nd[3]->at[0]; 

v[337]=nd[2]->at[1]; 

v[336]=nd[2]->at[0]; 

v[335]=nd[1]->at[1]; 

v[334]=nd[1]->at[0]; 

v[333]=nd[0]->at[1]; 

v[332]=nd[0]->at[0]; 

v[331]=nd[3]->X[1]; 

v[330]=nd[3]->X[0]; 

v[329]=nd[2]->X[1]; 

v[328]=nd[2]->X[0]; 

v[327]=nd[1]->X[1]; 

v[326]=nd[1]->X[0]; 

v[325]=nd[0]->X[1]; 

v[324]=nd[0]->X[0]; 

v[320]=es->Data[1]; 

v[450]=2e0*v[320]; 

v[322]=1e0/(1e0+v[320]); 

v[319]=es->Data[0]; 

v[323]=(v[319]*v[322])/2e0; 

v[451]=2e0*v[323]; 

v[321]=(v[323]*v[450])/(1e0-v[450]); 

v[405]=1e0/(v[321]+v[451]); 
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v[403]=v[405]*v[451]; 

i317=(int)(es->id.NoIntPoints); 

for(i318=1;i318<=i317;i318++){ 

 v[343]=es->IntPoints[4*(-1+i318)]; 

 v[352]=1e0-v[343]; 

 v[359]=-v[352]/4e0; 

 v[350]=1e0+v[343]; 

 v[360]=-v[350]/4e0; 

 v[344]=es->IntPoints[1+4*(-1+i318)]; 

 v[353]=1e0+v[344]; 

 v[361]=v[353]/4e0; 

 v[348]=1e0-v[344]; 

 v[358]=-v[348]/4e0; 

 v[362]=(v[324]-v[326])*v[358]+(v[328]-v[330])*v[361]; 

 v[363]=(v[325]-v[327])*v[358]+(v[329]-v[331])*v[361]; 

 v[364]=(v[324]-v[330])*v[359]+(v[326]-v[328])*v[360]; 

 v[365]=(v[325]-v[331])*v[359]+(v[327]-v[329])*v[360]; 

 v[366]=-(v[363]*v[364])+v[362]*v[365]; 

 v[368]=v[365]/v[366]; 

 v[386]=v[361]*v[368]; 

 v[378]=v[358]*v[368]; 

 v[369]=-(v[364]/v[366]); 

 v[389]=v[361]*v[369]; 

 v[380]=v[358]*v[369]; 

 v[370]=-(v[363]/v[366]); 
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 v[387]=v[359]*v[370]; 

 v[382]=v[360]*v[370]; 

 v[371]=v[362]/v[366]; 

 v[390]=v[359]*v[371]; 

 v[384]=v[360]*v[371]; 

 v[376]=v[378]+v[387]; 

 v[377]=v[380]+v[390]; 

 v[379]=-v[378]+v[382]; 

 v[381]=-v[380]+v[384]; 

 v[383]=-v[382]+v[386]; 

 v[385]=-v[384]+v[389]; 

 v[388]=-v[386]-v[387]; 

 v[391]=-v[389]-v[390]; 

 

v[392]=v[332]*v[376]+v[334]*v[379]+v[336]*v[383]+v[338]*v

[388]; 

 v[452]=2e0*v[392]+(v[392]*v[392]); 

 

v[393]=v[333]*v[376]+v[335]*v[379]+v[337]*v[383]+v[339]*v

[388]; 

 

v[394]=v[332]*v[377]+v[334]*v[381]+v[336]*v[385]+v[338]*v

[391]; 

v[395]=v[333]*v[377]+v[335]*v[381]+v[337]*v[385]+v[339]*v

[391]; 
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 v[453]=2e0*v[395]+(v[395]*v[395]); 

 v[397]=v[452]/2e0; 

 v[398]=(v[393]+(1e0+v[393])*v[394])/2e0; 

 v[399]=v[453]/2e0; 

 v[401]=v[403]*(v[397]*v[451]+v[321]*(v[399]+v[452])); 

 v[402]=v[398]*v[451]; 

 v[404]=v[403]*(v[399]*v[451]+v[321]*(v[397]+v[453])); 

 v[412]=-v[401]-v[404]; 

 v[411]=v[412]/3e0; 

 gpost[i318-1][0]=v[401]; 

 gpost[i318-1][1]=v[402]; 

 gpost[i318-1][2]=v[402]; 

 gpost[i318-1][3]=v[404]; 

 gpost[i318-1][4]=v[397]; 

 gpost[i318-1][5]=v[398]; 

 gpost[i318-1][6]=v[398]; 

 gpost[i318-1][7]=v[399]; 

 gpost[i318-1][8]=-(v[321]*(v[397]+v[399])*v[405]); 

 gpost[i318-

1][9]=sqrt(0.15e1*(2e0*Power(v[402],2)+Power(v[401]+v[411

],2)+Power(v[404]+v[411],2) 

  +Power(v[412],2)/9e0)); 

};/* end for */ 

npost[0][0]=v[332]; 

npost[1][0]=v[334]; 
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npost[2][0]=v[336]; 

npost[3][0]=v[338]; 

npost[0][1]=v[333]; 

npost[1][1]=v[335]; 

npost[2][1]=v[337]; 

npost[3][1]=v[339]; 

npost[0][2]=v[332]; 

npost[1][2]=v[334]; 

npost[2][2]=v[336]; 

npost[3][2]=v[338]; 

npost[0][3]=v[333]; 

npost[1][3]=v[335]; 

npost[2][3]=v[337]; 

npost[3][3]=v[339];  

}; 
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 C 
APPENDIX C: LINEAR AceGEN CODE GENERATION 

/******************************************************** 

 

* AceGen    5.002 Windows (8 Mar 13)                         

* 

*           Co. J. Korelc  2007            10 May 13 

16:35:34* 

********************************************************* 

 

User  : Full professional version 

Notebook  : Compliant Mechanisms Deformation Code (with    

both Linearities).nb 

Evaluation time    : 14 s     

Mode        : Optimal 

Number of formulae : 309      

Method      : Automatic 

Subroutine         : SKR size :1124 

Subroutine         : SSE size :2001 

Subroutine         : SPP size :922 

Total size of Mathematica code : 4047 subexpressions 

Total size of C code           : 12313 bytes*/ 

#include "sms.h" 

 

void SKR(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns,NodeData **nd,double *rdata,int 

*idata,double *p,double **s); 

void SSE(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns,NodeData **nd,double *rdata,int 

*idata,double *p); 
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void SPP(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns,NodeData **nd,double *rdata,int 

*idata,double **gpost,double **npost); 

int MMAInitialisationCode[]={ 

0,0 

}; 

DLLEXPORT int SMTSetElSpec(ElementSpec *es,int *idata,int 

ic,int ng) 

{ int intc,nd,i;FILE *SMSFile; 

  static int pn[11]={1, 2, 3, 4, 0, 1, 2, 3, 4, -1, 0}; 

  static int dof[4]={2, 2, 2, 2}; 

  static int nsto[4]={0, 0, 0, 0}; 

  static int ndat[4]; 

  static char *nid[]={"D","D","D","D"}; 

  static char *gdcs[]={"E -elastic modulus","$[Nu]$ -

Poisson ratio","t -thickness"}; 

  static double defd[]={21000e0,0.3e0,1e0,0e0}; 

  static char 

*gpcs[]={"Sxx","Sxy","Syx","Syy","Exx","Exy", 

                       "Eyx","Eyy","Ezz","Mises stress"}; 

  static char 

*npcs[]={"DeformedMeshX","DeformedMeshY","u","v"}; 

  static char *sname[]={"E -elastic modulus","$[Nu]$ -

Poisson ratio"}; 

  static char *idname[]={""}; 
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  static int idindex[1]; 

  static char *rdname[]={""}; 

  static char *cswitch[]={""}; 

  static int iswitch[1]={0}; 

  static double dswitch[1]={0e0}; 

  static int rdindex[1]; 

  static int nspecs[4]; 

  static double version[3]={3.001,3.001,7.}; 

  static double pnweights[4]={1e0,1e0,1e0,1e0}; 

  static double rnodes[12]={-1e0,-1e0,0e0,1e0,-1e0,0e0, 

  1e0,1e0,0e0,-1e0,1e0,0e0}; 

  es->ReferenceNodes=rnodes; 

  if(ng==-1) es->Data=defd; 

  es->id.NoGroupData=3; 

  es->Code=" CMsWithLinear";es->Version=version; 

  es->MainTitle=""; 

  es->SubTitle=""; 

  es->SubSubTitle="$bold$Postprocessing$bold$:$n2$Sij - 

Cauchy stress tensor$n2$Eij - Green-Lagrange strain 

tensor."; 

  es->Bibliography=""; 

  es->id.NoDimensions=2;es->id.NoDOFGlobal=8;es-

>id.NoDOFCondense=0;es->id.NoNodes=4; 

  es->id.NoSegmentPoints=10;es->Segments=pn;es-

>PostNodeWeights=pnweights; 
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  es->id.NoIntSwitch=0;es->IntSwitch=iswitch;es-

>id.DemoLimitation=0; 

  es->id.NoDoubleSwitch=0;es->DoubleSwitch=dswitch; 

  es->id.NoCharSwitch=0;es->CharSwitch=cswitch; 

  es->DOFGlobal=dof;es->NodeID=nid;es-

>id.NoGPostData=10;es->id.NoNPostData=4; 

  es->id.SymmetricTangent=1;es->id.CreateDummyNodes=0;es-

>id.PostIterationCall=0; 

  es->Topology="Q1";es->GroupDataNames=gdcs;es-

>GPostNames=gpcs;es->NPostNames=npcs; 

  es->AdditionalNodes="{}&"; 

  es->AdditionalGraphics="{}&"; 

  es->MMAInitialisation=MMAInitialisationCode; 

  es->MMANextStep=""; 

  es->MMAStepBack=""; 

  es->MMAPreIteration=""; 

  es->IDataNames=idname;es->IDataIndex=idindex;es-

>RDataNames=rdname;es->RDataIndex=rdindex; 

  es->id.NoIData=0;es->id.NoRData=0; 

  es->id.ShapeSensitivity=1;es->id.NoSensNames=2;es-

>SensitivityNames=sname;es->NodeSpecs=nspecs; 

  es->user.SPP=SPP;es->user.SSE=SSE;es->user.SKR=SKR; 

  es->id.DefaultIntegrationCode=2; 

  if(ic==-1){intc=2;} else {intc=ic;}; 

  es->id.IntCode=intc; 
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  SMTMultiIntPoints(&intc,idata,&es->id.NoIntPoints, 

      &es->id.NoIntPointsA,&es->id.NoIntPointsB,&es-

>id.NoIntPointsC,0); 

  es->id.NoAdditionalData=0; 

  es->id.NoTimeStorage=0; 

  es->id.NoElementData=0; 

  nd=es-

>id.NoDimensions*idata[ID_NoShapeParameters];for(i=0;i<4;

i++)ndat[i]=nd; 

  es->NoNodeStorage=nsto;es->NoNodeData=ndat; 

  if(1){ 

   return 0; 

  }else{ 

   return 1; 

  }; 

}; 

/******************* S U B R O U T I N E 

*********************/ 

void SKR(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns 

     ,NodeData **nd,double *rdata,int *idata,double 

*p,double **s) 

{ 

int i3,i4,i97,i105,b1,b2,b101,b103; 

v[53]=es->Data[2]; 
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v[25]=nd[3]->at[1]; 

v[24]=nd[3]->at[0]; 

v[23]=nd[2]->at[1]; 

v[22]=nd[2]->at[0]; 

v[21]=nd[1]->at[1]; 

v[20]=nd[1]->at[0]; 

v[19]=nd[0]->at[1]; 

v[18]=nd[0]->at[0]; 

v[17]=nd[3]->X[1]; 

v[16]=nd[3]->X[0]; 

v[15]=nd[2]->X[1]; 

v[14]=nd[2]->X[0]; 

v[13]=nd[1]->X[1]; 

v[12]=nd[1]->X[0]; 

v[11]=nd[0]->X[1]; 

v[10]=nd[0]->X[0]; 

v[6]=es->Data[1]; 

v[380]=2e0*v[6]; 

v[8]=1e0/(1e0+v[6]); 

v[5]=es->Data[0]; 

v[9]=(v[5]*v[8])/2e0; 

v[99]=2e0*v[9]; 

v[7]=(v[380]*v[9])/(1e0-v[380]); 

v[111]=2e0*v[7]+v[99]; 

v[89]=v[99]/(v[7]+v[99]); 
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b1=(int)(idata[ID_SkipResidual])==1; 

b2=(int)(idata[ID_SkipTangent])==1; 

i3=(int)(es->id.NoIntPoints); 

for(i4=1;i4<=i3;i4++){ 

 v[29]=es->IntPoints[4*(-1+i4)]; 

 v[38]=1e0-v[29]; 

 v[45]=-v[38]/4e0; 

 v[36]=1e0+v[29]; 

 v[46]=-v[36]/4e0; 

 v[30]=es->IntPoints[1+4*(-1+i4)]; 

 v[39]=1e0+v[30]; 

 v[47]=v[39]/4e0; 

 v[34]=1e0-v[30]; 

 v[44]=-v[34]/4e0; 

 v[48]=(v[10]-v[12])*v[44]+(v[14]-v[16])*v[47]; 

 v[49]=(v[11]-v[13])*v[44]+(v[15]-v[17])*v[47]; 

 v[50]=(v[10]-v[16])*v[45]+(v[12]-v[14])*v[46]; 

 v[51]=(v[11]-v[17])*v[45]+(v[13]-v[15])*v[46]; 

 v[52]=-(v[49]*v[50])+v[48]*v[51]; 

 v[54]=v[51]/v[52]; 

 v[72]=v[47]*v[54]; 

 v[64]=v[44]*v[54]; 

 v[55]=-(v[50]/v[52]); 

 v[75]=v[47]*v[55]; 

 v[66]=v[44]*v[55]; 
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 v[56]=-(v[49]/v[52]); 

 v[73]=v[45]*v[56]; 

 v[68]=v[46]*v[56]; 

 v[57]=v[48]/v[52]; 

 v[76]=v[45]*v[57]; 

 v[70]=v[46]*v[57]; 

 v[62]=v[64]+v[73]; 

 v[63]=v[66]+v[76]; 

 v[65]=-v[64]+v[68]; 

 v[67]=-v[66]+v[70]; 

 v[69]=-v[68]+v[72]; 

 v[71]=-v[70]+v[75]; 

 v[74]=-v[72]-v[73]; 

 v[4252]=v[62]; 

 v[4253]=0e0; 

 v[4254]=v[65]; 

 v[4255]=0e0; 

 v[4256]=v[69]; 

 v[4257]=0e0; 

 v[4258]=v[74]; 

 v[4259]=0e0; 

 v[77]=-v[75]-v[76]; 

 v[4244]=0e0; 

 v[4245]=v[63]; 

 v[4246]=0e0; 
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 v[4247]=v[67]; 

 v[4248]=0e0; 

 v[4249]=v[71]; 

 v[4250]=0e0; 

 v[4251]=v[77]; 

 v[4232]=v[63]; 

 v[4233]=v[62]; 

 v[4234]=v[67]; 

 v[4235]=v[65]; 

 v[4236]=v[71]; 

 v[4237]=v[69]; 

 v[4238]=v[77]; 

 v[4239]=v[74]; 

 v[82]=es->IntPoints[(-1+4*i4)]*v[52]*v[53]; 

 v[83]=v[18]*v[62]+v[20]*v[65]+v[22]*v[69]+v[24]*v[74]; 

 v[381]=2e0*v[83]; 

v[84]=(v[19]*v[62]+v[18]*v[63]+v[21]*v[65]+v[20]*v[67]+v[

23]*v[69]+v[22]*v[71]+v[25]*v[74] 

  +v[24]*v[77])/2e0; 

 v[85]=v[19]*v[63]+v[21]*v[67]+v[23]*v[71]+v[25]*v[77]; 

 v[382]=2e0*v[85]; 

 v[87]=v[89]*(v[7]*(v[381]+v[85])+v[381]*v[9]); 

 v[90]=v[89]*(v[7]*(v[382]+v[83])+v[382]*v[9]); 

 v[4216]=v[62]*v[87]; 

 v[4217]=v[63]*v[90]; 
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 v[4218]=v[65]*v[87]; 

 v[4219]=v[67]*v[90]; 

 v[4220]=v[69]*v[87]; 

 v[4221]=v[71]*v[90]; 

 v[4222]=v[74]*v[87]; 

 v[4223]=v[77]*v[90]; 

 for(i97=1;i97<=8;i97++){ 

  v[113]=v[4231+i97]; 

  v[386]=v[113]*v[99]; 

  v[108]=v[4243+i97]*v[82]; 

  v[109]=v[4251+i97]*v[82]; 

  v[110]=(v[108]*v[111]+v[109]*v[7])*v[89]; 

  v[112]=(v[109]*v[111]+v[108]*v[7])*v[89]; 

  v[4260]=v[112]*v[62]; 

  v[4261]=v[110]*v[63]; 

  v[4262]=v[112]*v[65]; 

  v[4263]=v[110]*v[67]; 

  v[4264]=v[112]*v[69]; 

  v[4265]=v[110]*v[71]; 

  v[4266]=v[112]*v[74]; 

  v[4267]=v[110]*v[77]; 

  if(!(b1)){ 

   p[i97-1]+=v[82]*(v[4215+i97]+v[386]*v[84]); 

  } else { 

  }; 
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  if(b2){ 

   continue; 

  } else { 

  }; 

  for(i105=i97;i105<=8;i105++){ 

   s[i97-1][i105-

1]+=v[4259+i105]+(v[386]*v[4231+i105]*v[82])/2e0; 

  };/* end for */ 

 };/* end for */ 

};/* end for */ 

}; 

/******************* S U B R O U T I N E 

*********************/ 

void SSE(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns 

     ,NodeData **nd,double *rdata,int *idata,double *p) 

{ 

int i116,i117,i118,i120,i121,i225,i228,b142,b227; 

v[206]=es->Data[1]; 

v[239]=1e0-2e0*v[206]; 

v[233]=1e0+v[206]; 

v[205]=es->Data[0]; 

v[388]=v[205]/v[233]; 

v[238]=v[206]*v[388]; 

v[209]=v[388]/2e0; 
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v[230]=v[388]; 

v[207]=v[238]/v[239]; 

v[242]=v[207]+v[230]; 

v[216]=(2e0*v[209])/v[242]; 

v[175]=es->Data[2]; 

v[137]=nd[3]->at[1]; 

v[136]=nd[3]->at[0]; 

v[135]=nd[2]->at[1]; 

v[134]=nd[2]->at[0]; 

v[133]=nd[1]->at[1]; 

v[132]=nd[1]->at[0]; 

v[131]=nd[0]->at[1]; 

v[130]=nd[0]->at[0]; 

v[129]=nd[3]->X[1]; 

v[128]=nd[3]->X[0]; 

v[127]=nd[2]->X[1]; 

v[126]=nd[2]->X[0]; 

v[125]=nd[1]->X[1]; 

v[124]=nd[1]->X[0]; 

v[123]=nd[0]->X[1]; 

v[122]=nd[0]->X[0]; 

i116=(int)(idata[ID_SensIndex]); 

i117=(int)(es->SensType[i116-1]); 

i118=(int)(es->SensTypeIndex[i116-1]); 

i120=(int)(es->id.NoIntPoints); 
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for(i121=1;i121<=i120;i121++){ 

 if(i117==2){ 

  v[143]=nd[0]->Data[(-1+i118)*idata[ID_NoDimensions]]; 

  v[144]=nd[0]->Data[1+(-1+i118)*idata[ID_NoDimensions]]; 

  v[145]=nd[1]->Data[(-1+i118)*idata[ID_NoDimensions]]; 

  v[146]=nd[1]->Data[1+(-1+i118)*idata[ID_NoDimensions]]; 

  v[147]=nd[2]->Data[(-1+i118)*idata[ID_NoDimensions]]; 

  v[148]=nd[2]->Data[1+(-1+i118)*idata[ID_NoDimensions]]; 

  v[149]=nd[3]->Data[(-1+i118)*idata[ID_NoDimensions]]; 

  v[150]=nd[3]->Data[1+(-1+i118)*idata[ID_NoDimensions]]; 

 } else { 

  v[143]=0e0; 

  v[144]=0e0; 

  v[145]=0e0; 

  v[146]=0e0; 

  v[147]=0e0; 

  v[148]=0e0; 

  v[149]=0e0; 

  v[150]=0e0; 

 }; 

 v[151]=es->IntPoints[4*(-1+i121)]; 

 v[160]=1e0-v[151]; 

 v[167]=-v[160]/4e0; 

 v[158]=1e0+v[151]; 

 v[168]=-v[158]/4e0; 
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 v[152]=es->IntPoints[1+4*(-1+i121)]; 

 v[161]=1e0+v[152]; 

 v[169]=v[161]/4e0; 

 v[156]=1e0-v[152]; 

 v[166]=-v[156]/4e0; 

 v[154]=es->IntPoints[3+4*(-1+i121)]; 

 v[397]=v[154]*v[175]; 

 v[170]=(v[122]-v[124])*v[166]+(v[126]-v[128])*v[169]; 

 v[171]=(v[123]-v[125])*v[166]+(v[127]-v[129])*v[169]; 

 v[172]=(v[122]-v[128])*v[167]+(v[124]-v[126])*v[168]; 

 v[173]=(v[123]-v[129])*v[167]+(v[125]-v[127])*v[168]; 

 v[174]=-(v[171]*v[172])+v[170]*v[173]; 

 v[252]=1e0/Power(v[174],2); 

 v[176]=v[173]/v[174]; 

 v[194]=v[169]*v[176]; 

 v[186]=v[166]*v[176]; 

 v[177]=-(v[172]/v[174]); 

 v[197]=v[169]*v[177]; 

 v[188]=v[166]*v[177]; 

 v[178]=-(v[171]/v[174]); 

 v[195]=v[167]*v[178]; 

 v[190]=v[168]*v[178]; 

 v[179]=v[170]/v[174]; 

 v[198]=v[167]*v[179]; 

 v[192]=v[168]*v[179]; 
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 v[184]=v[186]+v[195]; 

 v[185]=v[188]+v[198]; 

 v[187]=-v[186]+v[190]; 

 v[189]=-v[188]+v[192]; 

 v[191]=-v[190]+v[194]; 

 v[193]=-v[192]+v[197]; 

 v[196]=-v[194]-v[195]; 

 v[199]=-v[197]-v[198]; 

 v[4238]=v[185]; 

 v[4239]=v[184]; 

 v[4240]=v[189]; 

 v[4241]=v[187]; 

 v[4242]=v[193]; 

 v[4243]=v[191]; 

 v[4244]=v[199]; 

 v[4245]=v[196]; 

 v[204]=v[174]*v[397]; 

 

v[210]=v[130]*v[184]+v[132]*v[187]+v[134]*v[191]+v[136]*v

[196]; 

 v[390]=2e0*v[210]; 

v[211]=(v[131]*v[184]+v[130]*v[185]+v[133]*v[187]+v[132]*

v[189]+v[135]*v[191]+v[134]*v[193] 

  +v[137]*v[196]+v[136]*v[199])/2e0; 

 v[398]=v[211]*v[230]; 
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v[212]=v[131]*v[185]+v[133]*v[189]+v[135]*v[193]+v[137]*v

[199]; 

 v[389]=2e0*v[212]; 

 v[276]=v[210]+v[389]; 

 v[275]=v[207]*v[276]+v[209]*v[389]; 

 v[273]=v[212]+v[390]; 

 v[272]=v[207]*v[273]+v[209]*v[390]; 

 v[214]=v[216]*v[272]; 

 v[217]=v[216]*v[275]; 

 v[4222]=v[184]*v[214]; 

 v[4223]=v[185]*v[217]; 

 v[4224]=v[187]*v[214]; 

 v[4225]=v[189]*v[217]; 

 v[4226]=v[191]*v[214]; 

 v[4227]=v[193]*v[217]; 

 v[4228]=v[196]*v[214]; 

 v[4229]=v[199]*v[217]; 

 for(i225=1;i225<=2;i225++){ 

  v[4203+i225]=0e0; 

 };/* end for */ 

 v[226]=v[224]; 

 if(i117==1){ 

  v[4203+i118]=1e0; 

 } else { 
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 }; 

 v[232]=v[4205]; 

 v[234]=-(v[232]/Power(v[233],2)); 

 v[392]=v[205]*v[234]; 

 v[235]=v[4204]; 

 v[391]=v[235]/v[233]+v[392]; 

 v[236]=v[391]/2e0; 

 v[237]=v[391]; 

v[241]=(v[232]*(2e0*v[233]*v[238]+v[205]*v[239])+v[206]*v

[239]*(v[235]+v[233]*v[392]))/ 

  (v[233]*Power(v[239],2)); 

 v[243]=(-2e0*(v[209]*(v[237]+v[241])-

v[236]*v[242]))/Power(v[242],2); 

 v[244]=(v[143]-v[145])*v[166]+(v[147]-v[149])*v[169]; 

 v[245]=(v[144]-v[146])*v[166]+(v[148]-v[150])*v[169]; 

 v[246]=(v[143]-v[149])*v[167]+(v[145]-v[147])*v[168]; 

 v[247]=(v[144]-v[150])*v[167]+(v[146]-v[148])*v[168]; 

 v[248]=v[173]*v[244]-v[172]*v[245]-

v[171]*v[246]+v[170]*v[247]; 

 v[393]=v[248]*v[252]; 

 v[249]=v[247]/v[174]-v[173]*v[393]; 

 v[250]=v[169]*v[249]; 

 v[251]=v[166]*v[249]; 

 v[253]=-(v[246]/v[174])+v[172]*v[393]; 

 v[254]=v[169]*v[253]; 
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 v[255]=v[166]*v[253]; 

 v[256]=-(v[245]/v[174])+v[171]*v[393]; 

 v[257]=v[167]*v[256]; 

 v[258]=v[168]*v[256]; 

 v[259]=v[244]/v[174]-v[170]*v[393]; 

 v[260]=v[167]*v[259]; 

 v[261]=v[168]*v[259]; 

 v[262]=v[251]+v[257]; 

 v[263]=v[255]+v[260]; 

 v[264]=-v[251]+v[258]; 

 v[265]=-v[255]+v[261]; 

 v[266]=v[250]-v[258]; 

 v[267]=v[254]-v[261]; 

 v[268]=-v[250]-v[257]; 

 v[269]=-v[254]-v[260]; 

 v[4254]=v[263]; 

 v[4255]=v[262]; 

 v[4256]=v[265]; 

 v[4257]=v[264]; 

 v[4258]=v[267]; 

 v[4259]=v[266]; 

 v[4260]=v[269]; 

 v[4261]=v[268]; 

v[270]=v[130]*v[262]+v[132]*v[264]+v[134]*v[266]+v[136]*v

[268]; 
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 v[394]=2e0*v[270]; 

 

v[271]=v[131]*v[263]+v[133]*v[265]+v[135]*v[267]+v[137]*v

[269]; 

 v[395]=2e0*v[271]; 

v[274]=v[243]*v[272]+v[216]*(v[241]*v[273]+v[236]*v[390]+

v[209]*v[394]+v[207]*(v[271]+v[394])); 

v[277]=v[243]*v[275]+v[216]*(v[241]*v[276]+v[236]*v[389]+

v[209]*v[395]+v[207]*(v[270]+v[395])); 

 v[4246]=v[214]*v[262]+v[184]*v[274]; 

 v[4247]=v[217]*v[263]+v[185]*v[277]; 

 v[4248]=v[214]*v[264]+v[187]*v[274]; 

 v[4249]=v[217]*v[265]+v[189]*v[277]; 

 v[4250]=v[214]*v[266]+v[191]*v[274]; 

 v[4251]=v[217]*v[267]+v[193]*v[277]; 

 v[4252]=v[214]*v[268]+v[196]*v[274]; 

 v[4253]=v[217]*v[269]+v[199]*v[277]; 

 for(i228=1;i228<=8;i228++){ 

  v[279]=v[4237+i228]; 

  p[i228-

1]+=v[248]*v[397]*(v[279]*v[398]+v[4221+i228])+v[204]*((v

[211]*v[237]+v[209]* 

(v[131]*v[262]+v[130]*v[263]+v[133]*v[264]+v[132]*v[265]+

v[135]*v[266]+v[134]*v[267]+v[137]*v[268]+v[136]*v[269]))

*v[279]+v[4245+i228]+v[398]*v[4253+i228]); 
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 };/* end for */ 

};/* end for */ 

}; 

/******************* S U B R O U T I N E 

*********************/ 

void SPP(double v[4269],ElementSpec *es,ElementData 

*ed,NodeSpec **ns 

     ,NodeData **nd,double *rdata,int *idata,double 

**gpost,double **npost) 

{ 

int i282,i283; 

v[304]=nd[3]->at[1]; 

v[303]=nd[3]->at[0]; 

v[302]=nd[2]->at[1]; 

v[301]=nd[2]->at[0]; 

v[300]=nd[1]->at[1]; 

v[299]=nd[1]->at[0]; 

v[298]=nd[0]->at[1]; 

v[297]=nd[0]->at[0]; 

v[296]=nd[3]->X[1]; 

v[295]=nd[3]->X[0]; 

v[294]=nd[2]->X[1]; 

v[293]=nd[2]->X[0]; 

v[292]=nd[1]->X[1]; 

v[291]=nd[1]->X[0]; 
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v[290]=nd[0]->X[1]; 

v[289]=nd[0]->X[0]; 

v[285]=es->Data[1]; 

v[402]=2e0*v[285]; 

v[287]=1e0/(1e0+v[285]); 

v[284]=es->Data[0]; 

v[288]=(v[284]*v[287])/2e0; 

v[403]=2e0*v[288]; 

v[286]=(v[288]*v[402])/(1e0-v[402]); 

v[370]=1e0/(v[286]+v[403]); 

v[368]=v[370]*v[403]; 

i282=(int)(es->id.NoIntPoints); 

for(i283=1;i283<=i282;i283++){ 

 v[308]=es->IntPoints[4*(-1+i283)]; 

 v[317]=1e0-v[308]; 

 v[324]=-v[317]/4e0; 

 v[315]=1e0+v[308]; 

 v[325]=-v[315]/4e0; 

 v[309]=es->IntPoints[1+4*(-1+i283)]; 

 v[318]=1e0+v[309]; 

 v[326]=v[318]/4e0; 

 v[313]=1e0-v[309]; 

 v[323]=-v[313]/4e0; 

 v[327]=(v[289]-v[291])*v[323]+(v[293]-v[295])*v[326]; 

 v[328]=(v[290]-v[292])*v[323]+(v[294]-v[296])*v[326]; 
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 v[329]=(v[289]-v[295])*v[324]+(v[291]-v[293])*v[325]; 

 v[330]=(v[290]-v[296])*v[324]+(v[292]-v[294])*v[325]; 

 v[331]=-(v[328]*v[329])+v[327]*v[330]; 

 v[333]=v[330]/v[331]; 

 v[351]=v[326]*v[333]; 

 v[343]=v[323]*v[333]; 

 v[334]=-(v[329]/v[331]); 

 v[354]=v[326]*v[334]; 

 v[345]=v[323]*v[334]; 

 v[335]=-(v[328]/v[331]); 

 v[352]=v[324]*v[335]; 

 v[347]=v[325]*v[335]; 

 v[336]=v[327]/v[331]; 

 v[355]=v[324]*v[336]; 

 v[349]=v[325]*v[336]; 

 v[341]=v[343]+v[352]; 

 v[342]=v[345]+v[355]; 

 v[344]=-v[343]+v[347]; 

 v[346]=-v[345]+v[349]; 

 v[348]=-v[347]+v[351]; 

 v[350]=-v[349]+v[354]; 

 v[353]=-v[351]-v[352]; 

 v[356]=-v[354]-v[355]; 
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v[362]=v[297]*v[341]+v[299]*v[344]+v[301]*v[348]+v[303]*v

[353]; 

 v[404]=2e0*v[362]; 

v[363]=(v[298]*v[341]+v[297]*v[342]+v[300]*v[344]+v[299]*

v[346]+v[302]*v[348]+v[301]*v[350] 

  +v[304]*v[353]+v[303]*v[356])/2e0; 

 

v[364]=v[298]*v[342]+v[300]*v[346]+v[302]*v[350]+v[304]*v

[356]; 

 v[405]=2e0*v[364]; 

 v[366]=v[368]*(v[288]*v[404]+v[286]*(v[364]+v[404])); 

 v[367]=v[363]*v[403]; 

 v[369]=v[368]*(v[288]*v[405]+v[286]*(v[362]+v[405])); 

 v[377]=-v[366]-v[369]; 

 v[376]=v[377]/3e0; 

 gpost[i283-1][0]=v[366]; 

 gpost[i283-1][1]=v[367]; 

 gpost[i283-1][2]=v[367]; 

 gpost[i283-1][3]=v[369]; 

 gpost[i283-1][4]=v[362]; 

 gpost[i283-1][5]=v[363]; 

 gpost[i283-1][6]=v[363]; 

 gpost[i283-1][7]=v[364]; 

 gpost[i283-1][8]=-(v[286]*(v[362]+v[364])*v[370]); 
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 gpost[i283-

1][9]=sqrt(0.15e1*(2e0*Power(v[367],2)+Power(v[366]+v[376

],2)+Power(v[369]+v[376],2) 

  +Power(v[377],2)/9e0)); 

};/* end for */ 

npost[0][0]=v[297]; 

npost[1][0]=v[299]; 

npost[2][0]=v[301]; 

npost[3][0]=v[303]; 

npost[0][1]=v[298]; 

npost[1][1]=v[300]; 

npost[2][1]=v[302]; 

npost[3][1]=v[304]; 

npost[0][2]=v[297]; 

npost[1][2]=v[299]; 

npost[2][2]=v[301]; 

npost[3][2]=v[303]; 

npost[0][3]=v[298]; 

npost[1][3]=v[300]; 

npost[2][3]=v[302]; 

npost[3][3]=v[304]; }; 
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APPENDIX D: AceFEM CODE FOR FEA OF CBMM  

<< AceFEM`; 

Ydisp = 5.000; 

SMTInputData[]; 

SMTAddDomain["A", "CMsWithHyperelasticity", {"E *" -> 

165.0*10^3(*N/mm^2*), 

 "𝜈*" -> 0.4995, "t*" -> 3.5}]; 

SMTAddEssentialBoundary[Line[{{0.0000, 40.000}, {44.000, 

40.000}}], 1 -> 0, 2 -> 0]; 

SMTAddEssentialBoundary[Line[{{0.0000, 93.000}, {44.000, 

93.000}}], 1 -> 0, 2 -> 0]; 

SMTAddEssentialBoundary[Line[{{1293.700, 40.000}, 

{1337.700, 40.000}}], 1 -> 0, 2->0]; 

SMTAddEssentialBoundary[Line[{{1293.700, 93.000}, 

{1337.700, 93.000}}], 1 -> 0, 2->0]; 

SMTAddEssentialBoundary[Line[{{468.800, 107.200}, 

{868.800, 107.200}}], 2 -> -Ydisp]; 

 

(*Left Lower Anchor*) 

SMTMesh["A", "Q1", {20, 20}, {{{44.000, 0.0000}, {44.000, 

40.000}}, {{0.0000, 0.0000}, {0.0000, 40.000}}}, 

"InterpolationOrder" -> 4]; 
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(*Right Lower Anchor*) 

SMTMesh["A", "Q1", {20, 20}, {{{1337.7000, 0.0000}, 

{1337.700, 40.000}}, {{1293.700, 0.0000}, {1293.700, 

40.000}}}, "InterpolationOrder" -> 4]; 

 

(*Left Upper Anchor*) 

SMTMesh["A", "Q1", {20, 20}, {{{44.000, 93.000}, {44.000, 

133.000}}, {{0.0000, 93.000}, {0.0000, 133.000}}}, 

"InterpolationOrder" -> 4]; 

(*Right Upper Anchor*) 

SMTMesh["A", "Q1", {20, 20}, {{{1337.700, 93.000}, 

{1337.700, 133.000}}, {{1293.700, 93.000}, {1293.7000, 

133.000}}}, "InterpolationOrder" -> 4]; 

 

(*Left Side Beam*)  

SMTMesh["A", "Q1", {20, 20}, {{{24.000, 40.000}, {24.000, 

65.500}}, {{20.000, 40.000}, {20.00, 65.500}}}, 

"InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{24.000, 65.500}, {24.000, 

67.500}}, {{20.000, 65.500}, {20.000, 67.500}}}, 

"InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{24.000, 67.500}, {24.000, 

93.000}}, {{20.000, 67.500}, {20.000, 93.000}}}, 

"InterpolationOrder" -> 4]; 

 



 

Appendix D: AceFEM for FEA of CBMM 

 

D-3 

 

(*Right Side Beam*) 

SMTMesh["A", "Q1", {20, 20}, {{{1317.700, 40.000}, 

{1317.700, 65.500}}, {{1313.700, 40.000}, {1313.700, 

65.500}}}, "InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{1317.700, 65.500}, 

{1317.700, 67.500}}, {{1313.700, 65.500}, {1313.700, 

67.500}}}, "InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{1317.7000, 67.500}, 

{1317.700, 93.000}}, {{1313.700, 67.500}, {1313.700, 

93.000}}}, "InterpolationOrder" -> 4]; 

 

(*Left Outer Elastic Hinge*) 

SMTMesh["A", "Q1", {20, 20}, {{{54.000, 66.300}, {54.000, 

68.300}}, {{24.000, 65.500}, {24.000, 67.500}}}, 

"InterpolationOrder" -> 4]; 

(*Right Outer Elastic Hinge*) 

SMTMesh["A", "Q1", {20, 20}, {{{1313.700, 65.500}, 

{1313.700, 67.500}}, {{1283.700, 66.300}, {1283.700, 

68.300}}}, "InterpolationOrder" -> 4]; 

 

(*Left Coupler Link*) 

SMTMesh["A", "Q1", {20, 20}, {{{438.900, 71.400}, 

{438.900, 76.400}}, {{54.000, 61.300}, {54.000, 

66.300}}}, "InterpolationOrder" -> 4]; 
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SMTMesh["A", "Q1", {20, 20}, {{{438.900, 76.400}, 

{438.900, 78.400}}, {{54.000, 66.300}, {54.000, 

68.300}}}, "InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{438.900, 78.400}, 

{438.900, 83.400}}, {{54.000, 68.300}, {54.000, 

73.300}}}, "InterpolationOrder" -> 4]; 

 

(*Right Coupler Link*) 

SMTMesh["A", "Q1", {20, 20}, {{{1283.7000, 61.300}, 

{1283.700, 66.300}}, {{898.800, 71.400}, {898.800, 

76.400}}}, "InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{1283.700, 66.300}, 

{1283.700, 68.300}}, {{898.800, 76.400}, {898.800, 

78.400}}}, "InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{1283.700, 68.300}, 

{1283.700, 73.300}}, {{898.800, 78.400}, {898.800, 

83.400}}}, "InterpolationOrder" -> 4]; 

 

(*Left Inner Elastic Hinge*) 

SMTMesh["A", "Q1", {20, 20}, {{{468.800, 77.100}, 

{468.800, 79.100}}, {{438.900, 76.400}, {438.900, 

78.400}}}, "InterpolationOrder" -> 4]; 

(*Right Inner Elastic Hinge*) 



 

Appendix D: AceFEM for FEA of CBMM 

 

D-5 

 

SMTMesh["A", "Q1", {20, 20}, {{{898.800, 76.400}, 

{898.800, 78.400}}, {{868.800, 77.100}, {868.800, 

79.100}}}, "InterpolationOrder" -> 4]; 

 

(*Central Mass*) 

SMTMesh["A", "Q1", {20, 20}, {{{868.800, 49.300}, 

{868.800, 77.100}}, {{468.800, 49.300}, {468.800, 

77.100}}}, "InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{868.800, 77.100}, 

{868.800, 79.100}}, {{468.800, 77.100}, {468.800, 

79.100}}}, "InterpolationOrder" -> 4]; 

SMTMesh["A", "Q1", {20, 20}, {{{868.800, 79.100}, 

{868.800, 107.200}}, {{468.800, 79.100}, {468.800, 

107.200}}}, "InterpolationOrder" -> 4]; 

SMTAnalysis[]; 

SMTNextStep[1, 0.1];  

While[While[step = SMTConvergence[10^(-8), 15, {Adaptive, 

8, 0.01, 0.5, 1}], SMTNewtonIteration[]; ]; If[ 

!step[[1]],  

         SMTShowMesh[DeformedMesh -> True, Field -> v, 

Mesh -> False,  

           Show -> Window | {Animation, Bending},   

            BoundaryConditions -> True];  

If[step[[4]] === MinBound,  

        SMTStatusReport[Errormin]; ]; step[[3]],  
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      If[step[[1]], SMTStepBack[]; ]; SMTNextStep[1, 

step[[2]]]]; 

 

 

 



 

E-1 

 E 
APPENDIX E: AceFEM CODE FOR FEA OF CMA 

<<AceFEM`; 

Xdisp=0.1200; (*2 micrometer*) 

SMTInputData[];  

SMTAddDomain["A","CompMechAmpHyper",{"E 

*"1.034*10^9(*N/m^2*)," *"0.4995, t*"10.000}]; 

SMTAddEssentialBoundary[Line[{{0.000,0.000},{65.000,0.000

}}],1->0,2->0]; 

SMTAddEssentialBoundary[Line[{{0.000,5.000},{65.000,5.000

}}],1->0,2->0]; 

SMTAddEssentialBoundary[Line[{{9.500,9.000},{9.500,14.00}

}],1-Xdisp]; 

SMTAddEssentialBoundary[Line[{{55.500,9.000},{55.500,14.0

0}}],1Xdisp]; 

 

(*Base*) 

SMTMesh["A","Q1",{20,20},{{{0.0,0.0},{65.0,0.0}},{{0.0,5.

0},{65.0,5.0}}},"InterpolationOrder"4]; 

 

(*Left Column*) 

SMTMesh["A","Q1",{20,20},{{{5.000,6.000},{5.000,10.500}},

{{0.000,6.000},{0.000,10.500}}},"InterpolationOrder"4]; 
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SMTMesh["A","Q1",{20,20},{{{5.000,10.500},{5.000,12.500}}

,{{0.000,10.500},{0.000,12.500}}},"InterpolationOrder"4]

; 

SMTMesh["A","Q1",{20,20},{{{5.000,12.500},{5.000,17.850}}

,{{0.000,12.500},{0.000,17.850}}},"InterpolationOrder"4]

; 

SMTMesh["A","Q1",{20,20},{{{5.000,17.850},{5.000,18.250}}

,{{0.000,17.850},{0.000,18.250}}},"InterpolationOrder"4]

; 

SMTMesh["A","Q1",{20,20},{{{5.000,18.250},{5.000,20.600}}

,{{0.000,18.250},{0.000,20.600}}},"InterpolationOrder"4]

; 

SMTMesh["A","Q1",{20,20},{{{5.000,20.600},{5.000,21.000}}

,{{0.000,20.600},{0.000,21.000}}},"InterpolationOrder"4]

; 

SMTMesh["A","Q1",{20,20},{{{5.000,21.000},{5.000,22.000}}

,{{0.000,21.000},{0.000,22.000}}},"InterpolationOrder"4]

; 

 

(*Right Column*) 

SMTMesh["A","Q1",{20,20},{{{65.000,6.000},{65.000,10.500}

},{{60.000,6.000},{60.000,10.500}}},"InterpolationOrder"

4]; 
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SMTMesh["A","Q1",{20,20},{{{65.000,10.500},{65.000,12.500

}},{{60.000,10.500},{60.000,12.500}}},"InterpolationOrder

"4]; 

SMTMesh["A","Q1",{20,20},{{{65.000,12.500},{65.000,17.850

}},{{60.000,12.500},{60.000,17.850}}},"InterpolationOrder

"4]; 

SMTMesh["A","Q1",{20,20},{{{65.000,17.850},{65.000,18.250

}},{{60.000,17.850},{60.000,18.250}}},"InterpolationOrder

"4]; 

SMTMesh["A","Q1",{20,20},{{{65.000,18.250},{65.000,20.600

}},{{60.000,18.250},{60.000,20.600}}},"InterpolationOrder

"4]; 

SMTMesh["A","Q1",{20,20},{{{65.000,20.600},{65.000,21.000

}},{{60.000,20.600},{60.000,21.000}}},"InterpolationOrder

"4]; 

SMTMesh["A","Q1",{20,20},{{{65.000,21.000},{65.000,22.000

}},{{60.000,21.000},{60.000,22.000}}},"InterpolationOrder

"4]; 

 

(*Left Input Beam*) 

SMTMesh["A","Q1",{20,20},{{{9.500,9.000},{9.500,10.500},{

9.500,12.500},{9.500,14.000}},{{6.000,9.000},{6.000,10.50

0},{6.000,12.500},{6.000,14.000}}},"InterpolationOrder"4

]; 
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(*Right Input Beam*) 

SMTMesh["A","Q1",{20,20},{{{59.000,9.000},{59.000,10.500}

,{59.000,12.500},{59.000,14.000}},{{55.500,9.000},{55.500

,10.500},{55.500,12.500},{55.500,14.000}}},"Interpolation

Order"4]; 

 

(*Shuttle*) 

SMTMesh["A","Q1",{20,20},{{{37.500,12.000},{37.500,13.850

},{37.500,14.250},{37.500,16.600},{37.500,17.000},{37.500

,19.000}},{{27.500,12.000},{27.500,13.850},{27.500,14.250

},{27.500,16.600},{27.500,17.000},{27.500,19.000}}},"Inte

rpolationOrder"4]; 

 

(*Left Outer Flexible links*) 

SMTMesh["A","Q1",{20,20},{{{5.000,20.600},{8.000,20.067}}

,{{5.000,21.000},{8.000,20.467}}},"InterpolationOrder"4]

; 

SMTMesh["A","Q1",{20,20},{{{5.000,17.850},{8.000,17.317}}

,{{5.000,18.250},{8.000,17.717}}},"InterpolationOrder"4]

; 

 

(*Right Outer Flexible links*) 

SMTMesh["A","Q1",{20,20},{{{57.000,20.067},{60.000,20.600

}},{{57.000,20.467},{60.000,21.000}}},"InterpolationOrder

"4]; 
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SMTMesh["A","Q1",{20,20},{{{57.000,17.317},{60.000,17.85}

},{{57.000,17.717},{60.000,18.250}}},"InterpolationOrder"

4]; 

 

(*Left Rigid links*) 

SMTMesh["A","Q1",{20,20},{{{24.500,13.458},{24.500,14.383

},{24.500,14.783},{24.500,15.708}},{{8.000,16.392},{8.000

,17.317},{8.000,17.717},{8.000,18.642}}},"InterpolationOr

der"4]; 

SMTMesh["A","Q1",{20,20},{{{24.500,16.208},{24.500,17.133

},{24.500,17.533},{24.500,18.458}},{{8.000,19.142},{8.000

,20.067},{8.000,20.467},{8.000,21.392}}},"InterpolationOr

der"4]; 

 

(*Right Rigid links*) 

SMTMesh["A","Q1",{20,20},{{{57.000,16.392},{57.000,17.317

},{57.000,17.717},{57.000,18.642}},{{40.500,13.458},{40.5

00,14.383},{40.500,14.783},{40.500,15.708}}},"Interpolati

onOrder"4]; 

SMTMesh["A","Q1",{20,20},{{{57.000,19.142},{57.000,20.067

},{57.000,20.467},{57.000,21.392}},{{40.500,16.208},{40.5

00,17.133},{40.500,17.533},{40.500,18.458}}},"Interpolati

onOrder"4]; 
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(*Left Inner Flexible links*) 

SMTMesh["A","Q1",{20,20},{{{27.500,13.850},{27.500,14.250

}},{{24.500,14.383},{24.500,14.783}}}, 

"InterpolationOrder"4]; 

SMTMesh["A","Q1",{20,20},{{{27.500,16.600},{27.500,17.000

}},{{24.500,17.133},{24.500,17.533}}},"InterpolationOrder

"4]; 

 

(*Right Inner Flexible links*) 

SMTMesh["A","Q1",{20,20},{{{40.500,14.383},{40.500,14.783

}},{{37.500,13.850},{37.500,14.250}}},"InterpolationOrder

"4]; 

SMTMesh["A","Q1",{20,20},{{{40.500,17.133},{40.500,17.533

}},{{37.500,16.600},{37.500,17.000}}},"InterpolationOrder

"4]; 

 

(*Upper Left Flexure Hinge*) 

SMTMesh["A","Q1",{10,10},{{{5.000,12.500},{5.004,12.438},

{5.016,12.375}, 

    

{5.036,12.312},{5.067,12.250},{5.110,12.188},{5.169,12.12

5},{5.258,12.062},{5.499,12.000},{5.501,12.000},{5.742,12

.062},{5.831,12.125},{5.890,12.188},{5.933,12.250},{5.964

,12.312},{5.984,12.375},{5.966,12.438},{6.000,12.500}},{{

5.000,10.500},{5.004,10.562},{5.016,10.625},{5.036,10.688
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},{5.067,10.750},{5.110,10.812},{5.169,10.875},{5.258,10.

938},{5.499,11.000},{5.501,11.000},{5.742,10.938},{5.831,

10.875},{5.890,10.812},{5.933,10.750},{5.964,10.688},{5.9

84,10.665},{5.966,10.562},{6.000,10.500}}},"Interpolation

Order"4]; 

(*Upper Left Flexure Hinge*) 

SMTMesh["A","Q1",{10,10},{{{59.000,12.500},{59.004,12.438

},{59.016,12.375}, 

    

{59.036,12.312},{59.067,12.250},{59.110,12.188},{59.169,1

2.125},{59.258,12.062},{59.499,12.000},{59.501,12.000},{5

9.742,12.062},{59.831,12.125},{59.890,12.188},{59.933,12.

250},{59.964,12.312},{59.984,12.375},{59.966,12.438},{60.

000,12.500}},{{59.000,10.500},{59.004,10.562},{59.016,10.

625},{59.036,10.688},{59.067,10.750},{59.110,10.812},{59.

169,10.875},{59.258,10.938},{59.499,11.000},{59.501,11.00

0},{59.742,10.938},{59.831,10.875},{59.890,10.812},{59.93

3,10.750},{59.964,10.688},{59.984,10.665},{59.966,10.562}

,{60.000,10.500}}},"InterpolationOrder"4]; 

 

(*Lower Left Flexure Hinge*) 

SMTMesh["A","Q1",{10,10},{{{1.500,5.000},{1.562,5.004},{1

.625,5.016},{1.688,5.036},{1.750,5.067},{1.812,5.110},{1.

875,5.169},{1.938,5.258},{2.000,5.499},{2.000,5.501},{1.9

38,5.742},{1.875,5.831},{1.812,5.890},{1.750,5.933},{1.68



 

Appendix E: AceFEM for FEA of CMA 

 

E-8 

 

8,5.964},{1.665,5.984},{1.562,5.966},{1.500,6.000}},{{3.5

00,5.000},{3.438,5.004},{3.375,5.016},{3.312,5.036},{3.25

0,5.067},{3.188,5.110},{3.125,5.169},{3.062,5.258},{3.000

,5.499},{3.000,5.501},{3.062,5.742},{3.125,5.831},{3.188,

5.890},{3.250,5.933},{3.312,5.964},{3.375,5.984},{3.438,5

.966},{3.500,6.000}}},"InterpolationOrder"4]; 

 

(*Lower Right Flexure Hinge*) 

SMTMesh["A","Q1",{10,10},{{{61.500,5.000},{61.562,5.004},

{61.625,5.016},{61.688,5.036},{61.750,5.067},{61.812,5.11

0},{61.875,5.169},{61.938,5.258},{62.000,5.499},{62.000,5

.501},{61.938,5.742},{61.875,5.831},{61.812,5.890},{61.75

0,5.933},{61.688,5.964},{61.665,5.984},{61.562,5.966},{61

.500,6.000}},{{63.500,5.000},{63.438,5.004},{63.375,5.016

},{63.312,5.036},{63.250,5.067},{63.188,5.110},{63.125,5.

169},{63.062,5.258},{63.000,5.499},{63.000,5.501},{63.062

,5.742},{63.125,5.831},{63.188,5.890},{63.250,5.933},{63.

312,5.964},{63.375,5.984},{63.438,5.966},{63.500,6.000}}}

,"InterpolationOrder"4]; 

SMTAnalysis[]; 

SMTShowMesh["BoundaryConditions"True] 

SMTNextStep[1,.1]; 

While[ 

  While[step=SMTConvergence[10^-

8,15,{"Adaptive",8,.01,0.5,1}], SMTNewtonIteration[];]; 
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  If[Not[step[[1]]], 

SMTShowMesh["DeformedMesh"True,"Field""v","Mesh"Fals

e,"Show""Window"|{"Animation","Bending"},"BoundaryCondit

ions"True]; 

   ]; 

  If[step[[4]]==="MinBound",SMTStatusReport["Error:  < 

min"];]; 

  step[[3]]  

  ,If[step[[1]],SMTStepBack[];]; 

  \[RightDoubleBracket]]  ]; 
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 F 
APPENDIX F: AceFEM CODE FOR FEA OF CSA 

<<AceFEM`; 

Load=0.0015; 

SMTInputData[]; 

SMTAddDomain["A","StrokeAmpMechanism",{"E *"-

>1103.61*10^6," *"0.4995, "t*"0.001}]; 

SMTAddEssentialBoundary[Line[{{0.00000,0.00980},{0.00000,

0.01000}}],1->0,2->0]; 

SMTAddEssentialBoundary[Line[{{0.00590,0.00000},{0.00610,

0.00000}}],1->0,2->0]; 

SMTAddEssentialBoundary[Line[{{0.01000,0.00041},{0.01000,

0.00000}}],1->0]; 

SMTAddNaturalBoundary[Line[{{0.01000,0.00041},{0.01000,0.

00000}}],1->0,2Load]; 

SMTMesh["A","Q1",{20,20},{{{0.00000,0.00980},{0.00898,0.0

0800}},{{0.00000,0.01000},{0.01000,0.00800}}},"Interpolat

ionOrder"4]; 

SMTMesh["A","Q1",{20,20},{{{0.00071,0.00593},{0.01000,0.0

0800}},{{0.00023,0.00605},{0.00898,0.00800}}},"Interpolat

ionOrder"4]; 
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SMTMesh["A","Q1",{20,20},{{{0.00054,0.00573},{0.00794,0.0

0388}},{{0.00023,0.00605},{0.00804,0.00409}}},"Interpolat

ionOrder"4]; 

SMTMesh["A","Q1",{20,20},{{{0.00000,0.00600},{0.00590,0.0

0000}},{{0.00023,0.00605},{0.00599,0.00019}}},"Interpolat

ionOrder"4]; 

SMTMesh["A","Q1",{20,20},{{{0.00610,0.00000},{0.00795,0.0

0391}},{{0.00590,0.00000},{0.00776,0.00396}}},"Interpolat

ionOrder"4]; 

SMTMesh["A","Q1",{20,20},{{{0.00795,0.00391},{0.01000,0.0

0000}},{{0.00805,0.00409},{0.01000,0.00036}}},"Interpolat

ionOrder"4]; 

SMTAnalysis[]; 

SMTShowMesh["BoundaryConditions"True] 

SMTNextStep[1,.1]; 

While[ 

  While[step=SMTConvergence[10^-

8,15,{"Adaptive",8,.01,0.5,20}], SMTNewtonIteration[];]; 

  If[Not[step[[1]]], 

SMTShowMesh["DeformedMesh"True,"Field""v","Mesh"Fals

e,"Show""Window"|{"Animation","Bending"},"BoundaryCondit

ions"True]; 

   ]; 
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  If[step[[4]]==="MinBound",SMTStatusReport["Error:  < 

min"];]; 

  step[[3]]  

  ,If[step[[1]],SMTStepBack[];]; 

  SMTNextStep[1,step2\[RightDoubleBracket]]  ]; 
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 G 
APPENDIX G: AceFEM CODE FOR FEA OF POLE VAULT 

<<AceFEM`; 

=0.50; (* 0.5 for non-dissipative model *) 

=((+0.5)/2)2; 

Load=400; 

SMTInputData[]; 

SMTAddDomain["A","PoleVaultHyperDynamic",{"E *"26000," 

*"0.4995, ,"*","*"}]; 

SMTAddEssentialBoundary[{ "Z"==0&,1->0,2->0,3->0},{ 

"X"50.000 && "Z"5000.000&,1->-100}]; 

SMTMesh["A","O1",{60,5,100},{{{{25.000,0.000,0.000},{37.5

00,3.350,0.000},{46.650,12.500,0.000},{50.000,25.000,0.00

0},{46.650,37.500,0.000},{37.500,46.650,0.000},{25.000,50

.000,0.000},{12.500,46.650,0.000},{3.350,37.500,0.000},{0

.000,25.000,0.000},{3.350,12.500,0.000},{12.500,3.350,0.0

00},{25.000,0.000,0.000}},{{25.000,12.500,0.000},{31.250,

14.170,0.000},{35.830,18.750,0.000},{37.500,25.000,0.000}

,{35.830,31.250,0.000},{31.250,35.830,0.000},{25.000,37.5

00,0.000},{18.750,35.830,0.000},{14.170,31.250,0.000},{12

.500,25.000,0.000},{14.170,18.750,0.000},{18.750,14.170,0

.000},{25.000,12.500,0.000}}},{{{25.000,0.000,5000.000},{
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37.500,3.350,5000.000},{46.650,12.500,5000.000},{50.000,2

5.000,5000.000},{46.650,37.500,5000.000},{37.500,46.650,5

000.000},{25.000,50.000,5000.000},{12.500,46.650,5000.000

},{3.350,37.500,5000.000},{0.000,25.000,5000.000},{3.350,

12.500,5000.000},{12.500,3.350,5000.000},{25.000,0.000,50

00.000}},{{25.000,12.500,5000.000},{31.250,14.170,5000.00

0},{35.830,18.750,5000.000},{37.500,25.000,5000.000},{35.

830,31.250,5000.000},{31.250,35.830,5000.000},{25.000,37.

500,5000.000},{18.750,35.830,5000.000},{14.170,31.250,500

0.000},{12.500,25.000,5000.000},{14.170,18.750,5000.000},

{18.750,14.170,5000.000},{25.000,12.500,5000.000}}}}]; 

SMTAnalysis["Output"-

>"Deformation","PostOutput""BeamDynamic"]; 

SMTShowMesh["BoundaryConditions"True] 

SMTSave[L,L,R]; 

f:=300; n:=20; 

:=(2 Pi f n)/360; 

Clear[];[t_]:=Sin[ t]; 

Plot[[t],{t,0,1}] 

SMTNextStep[0.01,]; 

While[ 

  While[step=SMTConvergence[10^-8,10,{"Adaptive 

Time",8,0.001,1,1}], SMTNewtonIteration[];]; 

  If[Not[step[[1]]] 

   ,force=(Plus@@ SMTResidual["Z"5000.000&])[[2]]; 
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   SMTPut[SMTRData["Time"],force,"TimeFrequency"0.1]; 

   

SMTShowMesh["DeformedMesh"True,"Field""u","Show""Win

dow"|{"Animation","column"},"BoundaryConditions"True];]; 

  If[step[[4]]==="MinBound",SMTStatusReport["T<Tmin"];]; 

  step[[3]]  

  ,If[step[[1]],SMTStepBack[];]; 

  SMTNextStep[step [[2]] ,]  ];  
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 H 
APPENDIX H: AceFEM CODE FOR FEA OF FLEX-RUN 

<<AceFEM`; 

=0.50; (* 0.5 for non-dissipative model *) 

=((+0.5)/2)2; 

SMTInputData[]; 

SMTAddDomain["A","FlexFootHYPERDynamic",{"E *"26000," 

*"0.4995,"t*"22.22,"*","*"}]; 

SMTAddEssentialBoundary[Line[{{44.400,0.000},{44.400,6.67

0}}],1->0,2->0]; 

SMTAddNaturalBoundary["X"95.460 && "Y"197.580 &,2 ->     

-Load]; 

SMTMesh["A","Q1",{85,5},{{{0.000,9.000},{21.749,2.273},{4

4.400,0.000},{58.610,2.500},{75.685,8.446},{94.009,17.109

},{113.549,29.859},{133.549,46.989},{150.486,66.782},{165

.483,91.199},{176.371,118.030},{182.040,142.080},{176.427

,166.358},{165.768,181.308},{147.117,193.606},{126.536,19

7.580},{95.460,197.580},{73.310,197.580}},{{2.597,15.144}

,{23.074,8.810},{44.400,6.67},{56.53,8.842},{73.168,14.62

3},{90.791,23.032},{109.773,35.217},{128.817,51.692},{145

.108,70.728},{159.532,94.211},{169.371,118.030},{175.367,

142.601},{170.431,163.437},{160.865,176.776},{144.639,187
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.413},{126.536,190.910},{95.460,190.910},{73.310,190.910}

}}]; 

SMTAnalysis["Output"->"Deformation","PostOutput"" 

BeamDynamic"]; 

SMTShowMesh["BoundaryConditions"True] 

SMTSave[L,L,R]; 

f:=300; n:=20; 

:=(2 Pi f n)/360; 

Clear[];[t_]:=Sin[ t]; 

Plot[[t],{t,0,1}] 

SMTNextStep[0.01,]; 

While[ 

  While[step=SMTConvergence[10^-8,10,{"Adaptive 

Time",8,0.001,1,10}], SMTNewtonIteration[];]; 

  If[Not[step[[1]]] 

   ,force=(Plus@@ SMTResidual["Y"197.580&])[[2]]; 

   SMTPut[SMTRData["Time"],force,"TimeFrequency"0.1]; 

   

SMTShowMesh["DeformedMesh"True,"Field""Sxx","Show""W

indow"|{"Animation","column"},"BoundaryConditions"True]; 

 

AppendTo[ucurve,{SMTData["Multiplier"],SMTPostData["v",{

73.310,197.580}]}]; 
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   AppendTo[Misesv,SMTPostData[{"v","Mises 

stress"},{73.310,197.580}]]; 

   ];  

  If[step[[4]]==="MinBound",SMTStatusReport["T<Tmin"];]; 

  step[[3]]  

  ,If[step[[1]],SMTStepBack[];]; 

  SMTNextStep[step2\[RightDoubleBracket],] ]; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


