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Abstract 

The method of least squares is widely used in numerical analysis of data in all 

applied quantitative fields. Although there is only one least squares criterion, 

several schemes have been used for its implementation. The manifold approach 

treats the entire least squares process, including the representation of the variables, 

the model formation and the computations, in terms of manifolds. A manifold is a 

group of variables or functions taken together and treated as an entity in the 

computation process. This paper presents the least squares optimization on the 

manifolds and shows that the express formation and solution of the usually 

formidable normal equations can be avoided by employing the Hilbert space 

axioms and methods in the Euclidean space generated by the axial manifolds. The 

sequential and systematic approach of the new scheme, the preservation of the 

group structure and the analytical insights it provides for understanding the 
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fundamental geometry of the least squares problem, all of which are demonstrated 

in the sample applications presented, support the conclusions that the manifold 

approach is less daunting, requires less core storage space and facilitate better 

understanding of the problem and the solution. 
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1  Introduction  

The scientific study of a real world phenomenon often starts from 

conceptualizing it as an entity having physical properties or attributes which are 

either directly observable or can be derived indirectly from a mathematical 

relation characterizing the phenomenon under study. The method of least squares 

(LS) is one of the many ways to derive values for the unknown properties 

(parameters) given the values for the observable properties in sufficient quantity. 

Conceptually, the method makes use of redundant but independent observations in 

the mathematical formulation of a given problem by seeking the minimum of the 

sum of the squares of the residual or measurement errors in the solution process. 

The concept, first used by Gauss to estimate the orbits of celestial bodies, has been 

popularized over the years and applied to numerical data analysis in engineering 

and the sciences. 

Usually in traditional LS process, the variables are treated as individual 

elements or quantities in the governing equations and solution is sought using 

symbolic representation and manipulation in familiar long hand algebraic 

optimization procedure (Bjiorck et al., 2000, Beck and Ben-Tal 2006, Fu and 

Barlow 2004, Markovsky and Huffel 2005 and Lemmerling et al., 2003). The 
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introduction of vectors and matrices as holders of groups of variables in more 

recent applications of the method brought a great relieve from the drudgery and 

boredom of long hand data manipulation. However, the vector-matrix approach 

has been used only to alleviate the mental effort needed to solve the problem (Eckl 

et al, 2002) the geometric ideas, which could facilitate better understanding of the 

problem and the solution, are often lost in the final stages as attention is focused 

on the huge task of pulling out the numerical values of the parameters from the 

normal equations. Not only that, the construction of the normal equations in 

matrix-vector form frequently involves storing and manipulating many, sometimes 

large, matrices too often difficult to handle and prone to instability of solution due 

to random computational errors (Lemmerlinget al., 2003, Arabelos and Tscherning 

2009). 

In this paper, we employ a geometric approach in which the LS variables and 

the equations are treated as composite variables called the manifolds. 

Conceptually, a manifold is a set which serves as a holder for quantities which are 

to be treated as an entity. Taken collectively, the observables, the parameters, the 

functional models and their derivatives may be regarded as geometric entities in a 

Euclidean space, and therefore can be manipulated using the axioms or dialects of 

the Hilbert or inner product space (Chang and Paige 2003). This approach has a 

number of advantages: (1) it avoids the express formation of the normal equations, 

but instead uses the concepts of inner products, orthogonality and projections in 

Euclidean spaces to directly compute the required parameters; (2) it enables us to 

preserve the group structure of the variables; (3) it carries the underlying geometry 

of the LS problem throughout the solution process; (4) it facilitates an easy 

understanding of the LS process; (5) its simplicity of operation (in terms of easy 

derivation of the computational algorithms); (6) economy of thought (in terms of 

the savings in mental effort); (7) ergonomics of the solution scheme (efficiency 

due to sequential data processing and direct computation of parameters); and (9) 

the geometric illumination it offers for understanding the structure of the problem 
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under study. In addition, the use of orthogonal method for LS has been known to 

provide more stable solutions than direct inversion method (Chang and Paige 2003, 

Zarowski 2004 and Eckl et al 2002).  In this work, we refer to the set of 

observable (or observed) properties as data manifold; the set of unknown 

properties as parameter manifold; and the list of functional models (the mappings) 

as the model manifold. For ease of notation, we may refer to a manifold as a vector 

having a meaningful name and treated as an entity. Therefore, the terms manifold 

and vector will be used interchangeably. 

 

 

                

Figure 1: The LS manifold variables projection theorem 

 

Although, the results of a LS adjustment of a given set of measurements must 

be the same regardless of which technique is applied, our preference for the 

manifold approach is premised its advantages as stated earlier. In the rest of the 

paper, the structure of the manifolds and their use in LS adjustment are presented. 

The main properties and rules of operation in an inner product space are listed. 

The algorithms for practical implementation of the technique, including the 

orthogonalization of the axial manifolds, the projection theorem and how they are 

used to compute the estimators for the parameters, are demonstrated with some 

computational examples. Some conclusions are presented at the end. 

 

 

   (r)  residual manifold (y) Data manifold 
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2  Preliminary Notes 

2.1  Manifolds in Least Squares Adjustment 

The manifolds in a LS adjustment can be grouped into the primary manifolds 

and the secondary manifolds. The primary manifolds are those mentioned earlier 

in this paper (see Figure 1).  

They are: 1) the data manifold represented by  Tmyyy ...,,, 21y ,  

2) the parameter manifold represented by  Tnβββ ...,,, 21β , and  

3) the model manifold represented by  Tmfff ...,,, 21f .  

The secondary manifolds are those derived in the LS process through the 

manipulation of the primary manifolds. They include: expected data manifold 

which is computed from the parameter and the model manifolds and may be 

represented as  Tmyyy ˆ...,,ˆ,ˆˆ 21y ; the residual manifold which is introduced to 

account for the difference between the data manifold y and the expected data 

manifold ŷ and represented by  Tmrrr ...,,,ˆ 21 yyr ; the axes manifolds 

which are the partial directional derivatives of the model manifold with respect to 

each of the parameters. They form the axes of the n-dimensional Euclidean space 

of the LS problem and will be represented by: 

ni
β
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β

f

β

f
T
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ii
i ...,,2,1...,,, 21 
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
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




p  

where n is the number of parameters. Geometrically, each axial manifold has the 

same dimension (m) as the data manifold; and there are as many of them as there 

are unknowns (n) to be determined. In analytical geometry, these axial manifolds 

are called spanning or basis vectors. Each one is in fact the stack of the slopes, 

gradients, scales, sensitivities, or rates of change of the functional manifold with 

respect to one parameter only, and depending on the type of the LS problem being 

solved, can variously represent one direction (or axis) of change of a problem such 
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as: factor, category, coordinates, frequency channel, or length, breadth, and 

cross-sectional area of a structural member, etc. In general, they form the axes of 

the hyperspace in which the LS problem is formulated (Figure 2).  

  

                    

    Figure 2: A Geometric representation of the LS problem space generated by  

            the axial manifolds p1, p2, p3, p4 

 

 

We note that the common feature in all the manifolds listed is that they are 

column elements. They become variables in the LS process and may be arranged 

into larger groups called the super manifolds. A super manifold is one whose 

elements are manifolds arranged along a row. In other words, the super manifold 

is a row manifold whose elements are manifolds. Although, their use is limited in 

the sequel, the rules of the inner product space equally apply to super manifolds. 

In this paper, a super manifold is represented by capital boldfaced letter such as X, 

and may be alternatively called a matrix.    

The following operations and methods are available in a Euclidean space having a 

weight metric (Ng et al., 2002 and Chang and Paige 2003).  

Distance between two position vectors: 

P4

 1 2
, , ...,

m
y y y  y 

P3 

P2 

ŷ  =( ̂
1
P1+ ̂ 2P2+ ̂ 3P3+…+ ̂ nPn) 

r 

P1 

ŷ  



J.B. Olaleye, O. E. Abiodun and J. O. Olusina 149 

                )()(),( baWbaba  Td
          

(1)
 

a) Length (L2 Norm) of a position vector a: 

            Waaθ)d(a,a T
2            

(2)
 

b) The projection of position vector a on position vector b (i.e. length of a 

along b) 

                           Wbb

Wba
T

T

         (3)
 

c) Minimum length of a vector r can be expressed as 

                      
Wrrr Tminmin         (4) 

It is a quadratic form which when W is diagonal is the equation of a hyper   

ellipsoid. 

d) The Outer Product C of a manifold a is a super manifold which depicts the 

covariation or correlation among its elements.  

                         
TaWaC           (5) 

The trace of the outer product is equal to the inner product. 

 

 

3  Main Results  

To demonstrate the advantages of the manifold approach of LS optimization, 

a linear regression problem is solved. The algorithm is applied to the regression 

problem when the observations are of equal weight. In the field of Geomatics 

Engineering, equipment used for position determination is calibrated before use. 

This is done by the use of the same equipment for repeated independent 

observations which are later solved using the least squares method. The manifold 

approach presented above was used to determine the operational model of an 

equipment and the results are as presented. 
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 The problem 

In order to determine the operational model of an equipment, five measurements 

(xi, yi), i  = 1, 2, , 5, of its input and output were made and recorded as follows: 

  (1, 2.5)    (3, 3.5)    (6,5)    (5,3)   (3,4). 

From these five measurements, determine the parameters of a straight line model 

baxy   that best fits the data by assuming they are of equal weight. 

 

Result 

The primary manifolds are as stated below: 
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The dimension m and n of the problem is: 

M = 5,  n = 2 

The axial manifolds are as stated below:  

For I = 1 to n compute the axial manifolds 
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Hence the model is  

3684.23421.0ˆ  xy
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Results Validation 

The residual manifold is computed as 
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Discussion of Results 

An examination of the computational steps in the above examples shows a series 

of inner product calculations and arithmetic operations of addition, multiplication 

and division of inner products. The form of the formulas makes it easy to 

understand the geometric basis of the LS problem. Comparing the results, we see 

that the effect of the weighting is to increase the projection or inclination of the 

data manifold on the first axial manifold (which is influenced more by the data 
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points) and reduce the same on the second axial manifold (which is a constant 

axis). The increase in the slope and the decrease in the intercept of the fitted line is 

as a result of the heavy reliance on the first three elements of the data manifold 

than the last two. The check on the numerical values of the parameters confirms 

that the adjustment satisfies the projection theorems.   

 

 

3.1 Properties 

3.1.1 The LS Problem in Geometric Terms 

The geometric structure of the LS process can be established by considering 

the definition of the axial manifold given in the introduction section above. Since 

it is in fact the stack of the rates of change of the functional manifold with respect 

to one parameter only, it follows that for a LS problem with n unknowns, there are 

n such axial manifolds representing the n-dimensional rates of change of a 

phenomenon. Therefore, the total change observed in a phenomenon over a given 

time or space interval (or duration) is logically the sum of the products of 

individual axial manifolds and its corresponding space-time interval. Thus, 

intuitively, we can understand that what we call observed manifold is the totality 

of the changes contributed by all factors of change in a phenomenon. And along 

the same line of reasoning, since the observed total changes have been contributed 

by each direction or unit of change, what we call unknown parameter manifold is 

the collection of the numerical values of the time or space interval corresponding 

to the observed change. Accordingly, in analytical geometry, the observed 

manifold is represented as a linear (or linearised) combination of the axial 

manifolds, and is written as: 

           

rppppy  nnββββ ...,332211

      

(6) 

Note that r is introduced to account for the errors in the measurement of y. 

Equation 6 can be transposed in terms of residues as: 
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           1 1 2 2( ... )n nβ β β    r y p p p            (7) 

                      ˆ r y y  

where  ŷ = 1 1 2 2( ... )n nβ β β  p p p  is the expected or predicted manifold of the 

observed quantities. We observe in equation 6 that the observed manifold is a 

linear combination of the n axial manifolds p1, p2, …, pn which are composed of 

the partial derivatives of the functional manifold f with respect to a particular 

parameter in the parameter manifold. It follows that these axial manifolds form the 

axes of an n-dimensional space in which all other elements for the LS problem 

exist (see Figure 3). 

 

               

Figure 3:  The projection theorem 

 

Geometrically, we note that the elements y, ŷ and r are in triangular 

formation and each casts its shadows along the directions of the axial manifolds. 

The task of the LS process is to adjust them so that equation 8 (general principle 

of orthogonality condition) is satisfied such that r has zero components along the 

axial directions.  

                         ir p ,   1, 2, ,i n  ,                 (8)      

As a matter of fact, this requirement of orthogonality of the residual error 

manifold (Equation 7) to each of the n-axial manifolds (Equation 8) results in a set 

of n-equations usually called “normal equations” in conventional LS adjustment. 

In geometric terms, these equations are called orthogonality equations. 

 

 b   
a+b   

a 
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3.1.2 Construction of the Axial Manifolds 

As said earlier, each of the axial manifolds is the vector of the partial 

derivatives of the functional manifold with respect to one variable. The 

expressions for the construction of these column elements are given below: 
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3.1.3 Construction of the Axial Manifolds 

The orthogonality of the n-axial manifolds ni ppp ,...., 2  to themselves is an 

important requirement in the method of the manifolds, i.e 0 : , 1T
i j i j p p  to 

:n i j . To achieve this, the classical Gram-Schmidt algorithm is used (Keerthi 

and Shevade 2003, Zarowski 2004 and Chang and Paige 2003). The steps are as 

follows: 

Given a set of n axes manifolds ni ppp ,...., 2 , find an equivalent set nvvv ,...,, 21  

which are orthogonal. We take 1p  and equate it to 1v .  We now remove from 

2p the component of 2p  lying in the direction of 1v  and the remainder will be 

orthogonal to 1v . This remainder manifold gives us 2v . Also, by subtracting off 

the components of 3p in the directions of 21 vv and , we obtain 3v . This process 

can be repeated for all axes manifolds using the general formula (Zarowski 2004 

and Chang and Paige 2003): 
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For instance, when i = 1 equation 10 gives: 11 pv   
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Thus, the axial manifolds nvvv ,...,, 21 are orthogonal and may be used in place of 

the original axes ni ppp ,...., 2 . 

 

 

3.1.4 Formation of the Orthogonality Equations 

The least squares solution seeks to minimize the L2-norm of the residual 

error-manifold 2
2|||| r ≡ 

2

0 0 1 1 2 2 3 3 2
( )      y P P P P . This is achieved by 

inserting equation 18 into equation 15 to obtain: 

        1 1 2 2 3 3( ( ... )), ,n n iβ β β β     y p p p p p 0  ni ,,2,1      (11) 

For n axial manifolds, this equation is clearly a set of n linear equations which 

result from the orthogonality condition. For instance, for n = 4, there are 4 such 

equations as listed below:  

 
0)],([ 144332211  pppppy ββββ

 

 
0)],([ 244332211  pppppy ββββ

 

0)],([ 344332211  pppppy ββββ
       

(12) 

 
0)],([ 444332211  pppppy ββββ

 

which, by carrying out the indicated inner product expansions, may be re-arranged 

in matrix-vector form as: 
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(13) 

Equation 13 is referred to as the “normal equation” in conventional LS method 

and many algorithms have been developed for the direct solution of these 

equations (Bjiorck et al., 2000, Beck and Ben-Tal 2006, Fu and Barlow 2004). 

The approach here is to avoid a direct solution by imposing the orthogonality of 

the axial manifolds as shown in the next section.  

 

 

3.1.5 Derivation of the Solution Equations 

When the orthogonal axial manifolds nvvv ,...,, 21 are substituted in 

Equation 13, we have: 
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(14) 

It is noted that the orthogonalization of the axial manifolds has greatly simplified 

normal equations. In fact, by carrying out the inversion of the coefficient matrix of 

equation 14, we obtain equation 15, from which the simple formulas in Equation 

16 emerge: 
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   
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Equation 16 shows that the solution to the unknown parameters of a LS 

problem can be computed directly without an explicit formation of the familiar 

normal equations.  

However, while they give the correct values for all parameters, the estimate 

computed for the first parameter in the manifold is always wrong. Our 

investigation showed that because the de-correlation carried out on the axial 

manifolds (Equation 10) is not absolute but relative to the first axial manifold, the 

correct solution for the first parameter can be computed only by normalizing the 

first axial manifold to the residual vector r (Equation 8). Thus, by inserting 

equation 7 into equation 8 for i = 1 and expanding the indicated inner product, 

solving the resulting equation will yield the correct solution for β1. Thus, the 

correct formula for β1 in equation 16 is: 
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3.1.6 Summary of Computational Steps 
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Specify the dimension m and n of the problem 
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b. Generate the axial manifolds 

 If nonlinear model then linearize 

 For i = 1 to n compute the n axial manifolds 
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c. Initialize the computations 

Compute certain quantites for later use 
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d. Generate Orthogonal Axes manifolds 

For i=1 to n generate the orthogonal axial manifolds 

 

 

e. Compute parameters 
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f. Validate the results 
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Compute r, rTŷ, rTpi These inner products must be zero. 

 

 

4  Conclusion 

   The findings in this paper can be summarized as follows: 

1) The method of the manifolds is a potent alternative to the ubiquitous method of 

direct formation and inversion of normal equations for the solution of a least 

squares problem. The computation formulas are simple, the steps are routine 
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and the only mental exercise required is to remember that the inner product of 

two manifolds is the sum of the products of their corresponding elements. 

2) The sequence of the solution steps holds the promise of huge savings in the 

calculation efforts when additional parameters and thus axial manifolds are to 

be included in the solution such as when trying out different models on the 

same data manifold. 

3) Since only one parameter is treated at a time, huge savings in memory is 

possible as not all the data needs to be loaded into core memory at the same 

time. 

4) The method provides an insight into the fundamental geometry of the least 

squares problem by preserving the group structure of the variables in the 

solution process. 

5) It is also concluded that the correct formulae for the computation of the first 

parameter in the parameter list is that obtained from the explicit imposition of 

the projection theorem on the first axial manifold and the residual manifold. 
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