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• Deeply-learnt damped least squares method is proposed for inverse kinematics of snake-like robots.
• The proposed method has a reachability measure of 91.59% with error threshold of 0.01 mm.
• The method is computationally efficient, fast, and maneuvers singular points, simultaneously.
• Validation against popular methods used for inverse kinematics shows the proposed method is better.
• Deep learning in neural networks reduces iterations required for convergence of each target point.
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a b s t r a c t

Recently, snake-like robots are proposed to assist experts during medical procedures on internal organs
via natural orifices. Despite their well-spelt advantages, applications in radiosurgery is still hindered by
absence of suitable designs required for spatial navigations within clustered and confined parts of human
body, and inexistence of precise and fast inverse kinematics (IK) models. In this study, a deeply-learnt
damped least squares method is proposed for solving IK of spatial snake-like robot. The robot’s model
consists of several modules, and each module has a pair of serial-links connected with orthogonal twists.
For precise control of the robot’s end-effector, damped least-squares approach is used to minimize error
magnitude in a functionmodeled over analytical Jacobian of the robot. This is iteratively done until an apt
joint vector needed to converge the robot to desired positions is obtained. For fast control and singularity
avoidance, a deep network is built for prediction of unique damping factor required for each target point
in the robot’s workspace. The deep network consists of 11 x 15 array of neurons at the hidden layer, and
deeply-learnt with a huge dataset of 877,500 data points generated from workspace of the snake robot.
Implementation results for both simulated and actual prototype of an eight-link model of the robot show
the effectiveness of the proposed IK method. With error tolerance of 0.01 mm, the proposed method
has a very high reachability measure of 91.59% and faster mean execution time of 9.20 (±16.92) ms for
convergence. In addition, the method requires an average of 33.02 (±39.60) iterations to solve the IK
problem. Hence, approximately 3.6 iterations can be executed in 1 ms. Evaluation against popularly used
IK methods shows that the proposed method has very good performance in terms of accuracy and speed,
simultaneously. © 2018 Elsevier Ltd. All rights reserved.
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1. Background study

Medical robotics is becoming a safe and convenient assis-
tive platform for surgery and radiotherapy of internal organs in
confined areas of human body (Hadjerci et al., 2016). Convention-
ally, large incisions are required for proper visualization of such
organs. In surgery, medical robots, such as da Vinci and Zeus surgi-
cal systems, have been proposed and used for minimally invasive
procedures.Movementsmade bymedical experts aremimicked by
such systems to facilitate complex surgerieswithminimal invasion
(Omisore, Han, Ren, & Wang, 2016). Similarly, in radiosurgery,
oncologists are required to deliver treatment dosage to affected
tissueswhich are sometimes located in hidden areas of the human.
Despite the large amounts of morphologic and functional data
mostly used in pre-operative planning, experts are, sometimes,
unable to deliver it appropriately to targeted organs (Li, Zou, Li, Xie,
& Xiong, 2017). Therefore, medical robotic systems are employed
for precise delivery of pre-planned doses to intended operative
sites (Jayarao & Chin, 2007).

Radiation energy from linear particle accelerator in radiosurgi-
cal systems, like Gamma Knife (Hayashi et al., 2013), CyberKnife
(Kuo, Yu, Petrovich, & Apuzzo, 2003), can be directed to destroy
tumor cells without damaging the healthy organs in the body.
The target is bombarded with beams of ionizing radiation made-
up of gamma rays, x-rays, or sub-atomic particles like protons.
External beam radiotherapy has been a conventional approach
for delivering of radiation doses on tumor cells in the human
body. However, the non-invasive methods require high position-
ing accuracy of the radiation beam in order to focus the tumor
cells for a long period of time. Furthermore, directing the high-
energy rays through the body exposes healthy tissues around
the operative site to radiation. Recently, brachytherapy became
a common approach for radiosurgery of tumor cells in cervical,
prostate, and gastrointestinal areas (Schieda, Malone, Al-Dandan,
Ramchandani, & Siegelman, 2014). It involves precise placement
of short-range radiation isotopes injected to localize tumor cells in
the body. Hence, probability of damages to healthy tissues around
the targeted organs is reduced. Nonetheless, brachytherapy is an
outpatient treatment modality and more convenient for cervical
cancer. Since irradiation only affect tissues within fewmillimeters
of radiation source, prolonged treatment time is required. This can
lead to thrombosis of internal organs and may result in urinary
and digestive problems (Pieters, De Back, Koning, & Zwinderman,
2009).

In the last three decades, serial-link robots have been devel-
oped to assist experts in surgical and rehabilitative procedures
(Degani, Choset, Wolf, Ota, & Zenati, 2006; Ren, Omisore, Han, &
Wang, 2017; Sardana, Sutar, & Pathak, 2013). Snake-like robots
are emerging type of flexible manipulators being proposed for
medical aids. They consist of serial links that are interconnected
by several rotational joints for serpentine movements, and a linear
joint for translation. These redundant robots usually have a non-
stationary side where an end-effector is fixed, and its pose is ma-
nipulated towards given targets by kinematic models. Snake-like
robots are designed as modular structures with several variable-
length links and multiple twists (Degani et al., 2006; Ren et al.,
2017). Thus, they can exhibit spatial serpentine poses with varying
navigational patterns that can be fitted to manipulate objects in
confined areas. Furthermore, such designs are useful for obstacle
avoidance, kinematic modeling, and singularity avoidance (Degani
et al., 2006; Parsa, Daniali, & Ghaderi, 2010; Ren et al., 2017; Sar-
dana et al., 2013; Sheng, Yiqing, Qingwei, & Weili, 2006; Srinivasa,
Bhattacharyya, Sundareswara, Lee, & Grossberg, 2012).

Appropriate relationships between joint and Cartesian spaces
of a robot are vital to solving its kinematics. This can be in terms of
forward kinematics that is, solving for coordinates of a robot’s end-
effector based on a given joint-vector, or inverse kinematics (IK).

The latter involves computation of joint configurations from Carte-
sian space of the robot. Snake-like robots are capable of several
independent spatial articulations. Therefore, they can aid precise
and timely passage of radiosurgical tools to desired areas through
natural orifice or single-port incision in the human body. A major
factor hindering their adoption for interventional procedures is the
complex transcendental trigonometric computations required for
solving IK of the spatially redundant robot (Ren et al., 2017; Sar-
dana et al., 2013). Joint and Cartesian variables can bemapped into
nonlinear models while kinematics problem can be geometrically
solved. However, this is not applicable for kinematics of spatially
redundant robots. Alternatively, numerical methods have been
adopted for solving IKs of serial-link robots (Tchon, 2008; Yahya,
Moghavvemi, &Mohamed, 2011). These are based on analyzing the
Jacobian of the robot, and solvingminimization problems to obtain
the best configurations for given target points with an admissible
tolerance error.

Deep Learning (DL) is a subfield of machine learning that in-
volves application of neural networks with more than one hidden
layer structured to function like human brain. This learning ap-
proach is achievedwith deep neural architecturesmade-up of sev-
eral nonlinear that are layers designed to process multiple levels
of nonlinear operations. Recently, DL has demonstrated efficiently
in different fields such as medical imaging and robotics (Liu, Liu,
Sun, & Fang, 2017a). Applications of DL in robotics have been found
in grasp detection (Lenz, Lee, & Saxena, 2015), manipulation in
unknown environments (Levine, Wagener, & Abbeel, 2015), and
robot perceptions (Liu, Qin, Sun, & Guo, 2017b). IK in snake-like
robot is also a highly nonlinear problem which can be approached
with the learning modality. Classical neural networks have been
adopted to minimize the complexities involved in IK of redundant
robots (Parsa et al., 2010; Toshani & Farrokhi, 2014). However,
application of suchmethod for precise and timely control of snake-
like robots is still lacking. Furthermore, application of deep neural
network (DNN) inmodeling the high transcendence involved in IKs
of snake-like robots is yet to be explored.

In this study, DL is employed to predict the appropriate damp-
ing factor needed for solving IK of spatially flexible snake-like
robots. An important contribution of DL is its ability to auto-
matically find compact features that can well represent high-
dimensional data in a deep network. The proposed method is
aimed as a new variant of damped least square (DL-DLS) method,
and its novelty lies in prediction of damping factor for precise
and fast IK control of snake-like robots. The DL-DLS method gains
prediction knowledge by learning nonlinear functions that can
be defined from specified features of data points in the robot’s
workspace. Significant problems in robotics can be logically solved
with deep reinforcement learning, a superposition of DNN and
reinforcement learning. This learning approach adopts principled
frameworks for autonomous control in which the experience
gained by a robot from trial-and-error interactions within an en-
vironment can be utilized for decision making. To design the DNN,
an optimal damping factor is selected manually for data points
in the workspace of a snake-like robot by using trial-and-error
approach. The selected values are then used to train and validate
the deep network. Hence, this method follows behavioral cloning,
a deep reinforcement learning approach that takes advantage of
optimal actions from human experts and supervised learning to
guide future decision making process in the robot’s environment.

The rest of this paper is organized as follows. Review of related
works on IK studies is presented in Section 2. The design of a flexi-
ble snake-like robot is presented in Section 3. The proposedDL-DLS
method for IK of the robot is given in Section 4. The experimental
results and performance validation of the IKmethod are presented
in Section 5. Finally, conclusions of this study and future works are
given in Section 6.
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2. Related works

Solving IKproblems in serial link robots have beenbasedon sev-
eralmethods (Chung, Youm,&Chung, 1994; Elgazzar, 1985; Jamali,
Khan, &Rahman, 2011; Kostic, Hensen, de Jager, & Steinbuch, 2002;
Kucuk & Bingul, 2014; Makondo, Claassens, Tlale, & Braae, 2012;
Ren et al., 2017; Sardana et al., 2013; Sheng et al., 2006; Srinivasa
et al., 2012; Tchon, 2008; Toshani & Farrokhi, 2014; Yahya et al.,
2011; Yahya, Mohamed, Moghavvemi, & Yang, 2009). According to
Omisore, Han, Ren, Zhang, andWang (2017), thesemethods can be
simply categorized as algebraic and iterative approaches. Algebraic
approaches, including closed-form or geometricmethods, focus on
obtaining exact solutions based on a robot’s model. Such methods
involve solving complex transcendental equations to obtain a set
of joint angles needed to converge the effector to given targets
in the workspace. Closed-form methods are applicable to models
with, at least, three joint axes having a common intersection. These
are classes of industrial robots with simplified structure (Elgazzar,
1985; Kostic et al., 2002; Kucuk & Bingul, 2014). However, it is
challenging to obtain exact solutions for snake-like robots due to
spatial complexities and insufficient offsets needed to corroborate
the twisted joints at consecutive joints of the robots.

Alternatively, Denavit–Hartenberg (DH) parameters of such
robots can be geometrically analyzed to obtain suitable IK
solutions. Geometric methods are best used for solving forward
kinematics problem since only direct substitution of the robot’s pa-
rameters into the DHmatrix is required (Elgazzar, 1985). Nonethe-
less, geometric methods can be of advantage in solving the IK
problem of robotic configurations where exact and iterative meth-
ods are found inappropriate. Some geometry-based solutionswere
proposed in Chung et al. (1994), Jamali et al. (2011), Kostic et
al. (2002), Sheng et al. (2006) and Yahya et al. (2009) to solve
IK of planar manipulators. Success attained in those studies can
be attributed to the fact that geometric models of planar robots
are not mathematically complex. However, spatial navigation is
very important for surgical robots. Some studies have designed
snake-like robots to reach target points with tri-axial coordinates
(Degani et al., 2006; Ren et al., 2017). Initially, rotation of first link
was made orthogonal to the direction of rotations of other links
for spatial reachability, and the IK problem can then be solved in
just two steps (Makondo et al., 2012; Omisore, Han, Ren, Zhang,
and Wang, 2017; Sardana et al., 2013; Yahya et al., 2011). For
practical applications, high articulation and flexibility are impor-
tant for snake-like robots while trying to reach organs in confined
areas via natural orifices or minimal incision. Prototypes of highly
articulated robots were presented in Degani et al. (2006), Ren et
al. (2017) and Shang et al. (2011). To the best of our knowledge,
existing IK models cannot achieve precise and fast control of such
prototypes, simultaneously. Omisore, Han, Ren, Zhang and Ivanov
(2017) proposed a non-iterative geometric method for solving IK
of the robotic configuration in Ren et al. (2017). However, the ge-
ometric method losses accuracy with every increase in the robot’s
links.

Iterative methods have been successfully applied as alternative
approach to solving IK of serial-link robots. This category of IK
methods includes heuristic and numeric iterative solutions, which
have been used for intuitive manipulation of flexible snake-like
robots. A popular heuristic IK method is the cyclic coordinate
descent (CCD) proposed to solve IK problems by considering one
joint at a time (Wang & Chen, 1991). Also, Aristidou and Lasenby
(2011) proposed using both forward and backward reaching to
solve IK problem in a similar manner to CCD. The latter computes a
set of joint angular values required to place an end-effector at given
target points, using forward andbackward reachingwith the objec-
tive to minimize error. Both methods require low computational
cost per iteration since matrix manipulations are not involved. In

addition, both forward and backward reaching in each iteration
are executed simultaneous in the latter; hence, it requires reduced
number of iterations for convergence. Both methods suffer low
convergence for structureswith different orientations at each joint,
especially, when targeted points are far away from mid-planes of
the robot’sworkspace (Omisore, Han, Ren, Zhang and Ivanov, 2017;
Ren et al., 2017).

Numerical methods, which are essentially based on numeric
analysis of Jacobian matrix, are another iterative approach to
solving IK problems in robotics. These methods involve linear
approximations of actual velocities at each joint of a robot with
respect to that of its end-effector. Sometimes, the Jacobian is non-
invertible at singular points. Wolovich and Elliott (1984) proposed
transpose of Jacobian as a numeric technique for solving IK prob-
lems of the Stanford Arm. This method can be efficient and fast
sincematrix inversions are not required. However,many iterations
are required for convergence in cases of robots with different
orientations at each joint. Moreover, transpose-based methods
mostly fail to deliver solutions for rank deficient Jacobians (Pechev,
2008). In other variants, inverse of the Jacobian is approximated
to provide more stable, efficient, and singularity robust solutions
to IK problems. Moore–Penrose or pseudoinverse of the Jacobian
is a common and baseline approach used for approximation of
Jacobian inverse (Whitney, 1969). Analogous to the Newton-based
approaches, the method involves finding a minimum change in
joint-vector (angular values: ∆θ ) required to move a robot’s end-
effector within the coordinates of a target point at a predefined
tolerance value. This method is a better estimate for IK problems,
and it is often discussed in literature. However, its performance can
be very poor due to unstable configurations near singularities in
robot’s workspace.

Damped least-square (DLS) methods have been well-known as
stabilizer of pseudoinverse for near-singular points. This numerical
solutionwas first used inWampler (1986) andWampler and Leifer
(1988) for solving IK problems in robotic manipulators. It involves
selection of constant damping factor to approximate solution of
the Jacobian near-singular points. Nakamura and Hanafusa (1986)
extended the basic DLS by adding singular value decomposition
(SVD-DLS) to form a singularity robust solution for IK problems.
SVD-DLS shares many features of the basic DLS; hence, bothmeth-
ods operate just like traditional pseudoinverse method when the
damping factor is very close to zero. Deo and Walker studied the
use of DLS at velocity level in Deo and Walker (1992), and later
proposed an adaptive non-linear least-squares method for solving
IK problems in robotic manipulators in Deo and Walker (1993).
Rather than having the DLS ill-behaved, the adaptive method
switches to an alternate second-order model when the target
position is near singularity. Solutions of IK problem depend on
motion of the end-effector caused by entries of its Jacobian. Buss
and Kim (2005) proposed a selectively damped least-square (SDLS)
method for solving IK problems. The study considered how each
joint contributes to relative positions of the end-effector and dis-
tance of the end-effector from target. Although SDLS is better than
conventional methods in terms of position tracking; however, it is
slower due to computation of different singular vectors required to
prevent large changes in the joint angles.

Adoption of damping factor in Jacobian based methods has
been considered to minimize the effects of singularity problems.
Amongst several recent studies, Flacco, de Luca, and Khatib (2012),
Flacco and de Luca (2013), Kenwright (2011), andVargas, Leite, and
Costa (2014) have investigated the selection of optimal damping
factor such that the end-effectors in a flexible snake-like robot
can converge to given target points in a more stable and robust
way. However, none of these existing studies is found applicable
for medical procedures where accuracy and response time are
simultaneously important. In this study, a deeply-learnt damped
least square (DL-DLS) method is proposed for very precise and fast
IK control of spatially flexible snake-like robots that can be used as
assistive platforms for medical procedures.
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Fig. 1. CAD model of the snake-like robotic model for radiosurgery.

3. Snake-like robotic model for radiosurgery

This section presents the design model of a highly articulated
snake-like robot for radiosurgical treatment. The robotic model
is designed for effective delivery of pre-planned radiation doses
on cancerous tissues around the gastrointestinal area. Mostly, op-
eration of the robot requires steering the connected serial links
towards targeted tissues viaminimal invasion. For this proposition,
the snake-like robotic model in Fig. 1 is designed for minimally
invasive procedures. The robot’s effector (or last link) is to be
placed at an entry point such as themouth or a single small incision
point, and steered towards the targeted part.

The robotic model has series of consecutive orthogonally-
paired joint mechanisms for steering the end-effector towards
given points in its workspace. A linear actuator is connected with a
non-rotary joint to the base link (the first serial link) for advancing
or receding the whole robot as specified in a trajectory. Each
module of the robot has a pair of links connected by a rotational
actuator and also connected with subsequentmodules by a second
rotational actuator. In other words, the paired-links within each
module are a set of proper link and connecting link. The proper links
are distinguished by their longer length, which is 53.12 mm, and
two end-caps fixed at both ends for connectionwith the connecting
links. The latter have a shorter length of 11 mm and are used for
interconnection between consecutive proper links in the robot.
Both proper and connecting links in each module have cylindrical
shapes with a diameter of 20 mm. The rotational joint between
themodules have orthogonally twisted relationshipwith the joints
within the modules. Hence, each module of the snake-like robot is
capable of rotations in 3D Cartesian space. Furthermore, the whole
mechanism can be controlled to achieve complex serpentine mo-
tions fitted for confined and cluttered regions in human abdominal.

Regarding the other important design details for operation of
the snake-like robot, each rotational joint is driven by an actuator
coupled with brushless DC Micromotor. The motors are made-
up of rotor with permanent magnets and stator with windings.
Beveled gears with transmission ratio of 2:1 and reduction ratio of
625:1 are connected with themotors for speed and torque control,
respectively. Also, the end-effector can be surgical scissors, needle,
or a carbon nanotube for delivery of high doses of pre-planned
radiation on cancerous tissues (Fig. 1). By controlling the respective
geared motors, orthogonal movement of the joints allows roll,
pitch, and yaw rotations at each module of the snake-like robot
and thereby the end-effector can reach targeted coordinates with
high accuracy.

4. Proposed deeply-learnt DLS IK method

In this section, a deeply-learnt damped least square (DL-DLS) IK
method is proposed for precise and fast control of the snake-like
model in Fig. 1. The proposed method uses differential Jacobian
of the robot’s end-effector to solve its IK for given targets. Opti-
mal damping factor, that can converge the end-effector precisely
around the target, is rapidly predicted by a DNN. Details of the
proposed method are presented in the following subsections:

4.1. Jacobian DLS method

Despite the inexistence of closed-form solutions, analytical Ja-
cobian can be formulated to solve IK problems for spatially dex-
terous robots. By direct transformation, forward kinematics of the
snake-like robot in Fig. 1 can be expressed as in Eq. (1).

Te (θ) =

[
Re (θ) Pe(θ)T

0T 1

]
(1)

The matrix, Te (θ), is a cumulative product of the transformation
matrices from the base joint of the robot to its end-effector for
a given vector of joint variables: θ = [θ1, θ2, . . . , θn]

T . In other
words, Te can be achieved using:

0Tn =

n∏
i=1

i−1Ti (2)

Each transformation operation is defined based on the standardDH
convention using:

i−1Ti =

⎡⎢⎣cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎦ (3)

where i−1Ti is the transformation between two consecutive frames
over an angle, θi.

Hence, Te is the final transformationmatrixmade-up of position
vector PR3×1

e and orientation matrix RR3×3
e of the robot based on a

given joint-vector, and the matrix vary with respect to the joint-
vector θ . Wolovich and Elliott (1984) showed that rate of change
of the end-effector’s pose depends on rate of change of the joint-
vector (θn ×1).

4.1.1. Jacobian computation
The nonlinear relationship is used to model the rates of change

of the end-effector’s poses and joint space in form of Jacobian
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matrix. This approach involves expressing the differential kine-
matics of linear and angular velocities of the robot’s end-effector
as a function of its joint-space velocities. With first-order partial
derivatives, IK of the snake-like robot can be approximated as:

J =

[
∂P i

e

∂θj

∂Ri
e

∂θj

]T

(4)

where ∂P ie
∂θj

is the linear velocity of the end-effector’s position in ith
axis with respect to change in jth joint.

Therefore, the IK problem becomes solving for the best joint-
vector θ = [θ1, θ2, . . . , θn]

T in Eq. (4) such that Pe is approximately
equal to a desired target point, Pd. The Jacobian matrix in Eq. (4) is
iteratively updated by modifying the angular values at the robot’s
joints until the end-effector converges to the given target. For an
updated joint-vector (θ̂ := θ+∆θ ), rate of change of end-effector’s
velocity to that of jth joint’s velocity is:

J
(
θ̂

)
=

(
∂K Se

i

∂θj

)
(5)

where: ∂K Se
i are axial values of the end-effector’s pose in the

Cartesian space. ∀i = {x, y, z} ; ∀j = {1, 2, . . . , n}
Finally, the Jacobian is iteratively solved until the instantaneous

error (e⃗) in Eq. (6) is approximately equal to zero or less than a given
threshold.

e⃗ = J
(
θ̂

)
∆θ (6)

4.1.2. Damped least-square method
For a given Pd, it is important to solve Eq. (6) for optimal change

(∆θ ) in joint-vector (θ̂ ) such that e⃗ ≈ 0. Conventionally, an optimal
value of∆θ is computed by solving the pseudoinverse of J in Eq. (6)
as follows:

∆θ = J†e⃗ (7)

where J† is the pseudoinverse of J with an n × mmatrix.
From the basic properties of pseudoinverse, there exist a unique

∆θ that minimizes
J∆θ − e⃗

2 such that the matrix J(I − J†J) is a
projector on the null space of J. Hence, the solution vector ∆θ in
Eq. (7) can be obtained from any vector (ϕ) that sets J

(
I − J†J

)
ϕ

= 0. Thereby, a new relation to the norm of the joints’ velocities
can be written as a local minimizer as given in Eq. (8). Thus, the
optimal change for the joint-vector can be optimized using the
right pseudoinverse of J in Eq. (9).

∆θ = J†e⃗ + J
(
I − J†J

)
ϕ (8)

∆θ = JT (JJT )−1e⃗ (9)

where ∆θ is the optimal change in the joint-vector that gives the
best solution.

The pseudoinverse, J† = JT (JJT )−1 in Eq. (9) is computationally
inexpensive but JJT is only invertible when J has a full row rank.
Furthermore, least squares solution of the pseudoinverse is com-
pletely dominated by errors. To solve this problem, DLS (Wampler
& Leifer, 1988) can be adopted to invert the differential kinematics
in cases of singular positions in the workspace. Thus, Eq. (9) is
modified to find minimum-norm of joint speed that minimizesJ∆θ − e⃗

2 such that the robot is numerically stable near the
singular points. Using DLS in IK problems involves determining a
damping value (λ) thatminimizes the sum of norms of the solution
vector and joint-vector:

∆θλ = argmin
∆θ

{J∆θ − e⃗
2

+ λ2
∥∆θ∥

2
}

. (10)

For simplicity, the minimization problem can be rewritten as the
system of equation given in Eq. (11). Hence, the optimal joint-
vector (∆θ ) can bedetermined as the uniqueminimizer for normof
the damped joints’ velocitieswith Eq. (12). Finally,∆θ for the joint-
vector in the DLS solution, given in Eq. (12), can be re-expressed
with Eq. (13).

∆θλ = argmin
∆θ

(
J
λI

)
∆θ −

(
e⃗
0

) (11)

∆θ =

(
J
λI

)T (
e⃗
0

)
(12)

∆θ = JT (JJT + λ2I)−1e⃗ (13)

4.2. Prediction of damping factor by deep learning

Optimal convergence of the minimization problem in Section
4.1.2 is very important for effective operations (surgery or ra-
diotherapy) of the robot. A major challenge that hinders the ap-
plications of conventional DLS approaches is the determination
of optimal value for λ. This weighing factor stipulates the best
trade-off between norms of solution vector and the joint vector
which can be used to manage the kinematic error such that the
robot can simultaneously track given target points in fast and
precise manner. Thus, λ must be carefully chosen in Eq. (13).
Conventionally, common rules for choosing λ indicate that it is a
non-zero small constant value. Moderately, lower magnitude of λ

lead to accurate solutions, but often fails around singular points in
the workspace. Sometimes, it should be relatively high to obtain
feasible solutions. Alternatively, λ can be chosen as an estimate
of minimum singular values from SVD of the robot’s Jacobian or
as a function of its workspace manipulability. However, constant
damping factor and existing selective filtering methods are not
effective in terms of tracking precision and speed for all data points
in the robot’s workspace. Therefore, in this study, DNN is designed
for predicting optimal damping factor for any target point in the
workspace of the snake-like robot.

The architecture of our deeply-learnt feed-forward network is
shown in Fig. 2. The network adopts Bayesian regularization back-
propagation learning algorithm which uses Levenberg–Marquardt
optimization method for updating weight and bias values. This
method minimizes combinations of squared errors and weights to
produce an optimalmodel that efficiently generalizes the network.
Similarly, it stores a large amount of input–output mapping rela-
tionships for efficient prediction.

The DNN architecture has an input layer with four neurons.
These neurons accept coordinates (Px

t , Py
t , Pz

t ) of a target point
(Pt ) and the norm (∥Pt∥) of Pt from an initial point. The four input
variables (Px

t , Py
t , Pz

t , ∥Pt∥) are passed through the four neurons
at the input layer such that each variable is handled by a unique
neuron. The input neurons are connected to the hidden layer so
that all possible combinations of the input variables can be utilized
in the network. The four input variables can form a maximum
of fifteen different combinations which represent the number of
neurons at the hidden layers. With this structure, each combina-
tion is processed in a unique neuron of the hidden layer. To better
handle the non-linear relationship between the input variables
(Px

t , Py
t , Pz

t , ∥Pt∥) and the output variable (λt), all neurons at each
lth hidden layer are fully-connected to those in the l + 1th layer.
Since the network would be built with a huge, highly diverse,
and nonlinear dataset, a deeply-learnt network with several hid-
den layers is required for training process. This deep and fully-
connected structure at the hidden layer is adopted to enhance
the network’s learning capability. To achieve this, the input data
received at each jth neuron of an l − 1th hidden layer is processed
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Fig. 2. DNN architecture for prediction of damping factor.

by computing the weighted sum of all connections to the neuron
added with the bias, as expressed in Eq. (14).

ℵ
l
j =

∑
j

wl
jk × xlj + β l

j (14)

where wl
jk is the connection weight from kth neuron in the l − 1th

layer to the jth neuron in lth layer; xlj is the input data received by
jth neuron of lth layer; β l

j is the bias of jth neuron in lth layer.
Activation of each neuron is calculated by using the sigmoid

transfer function defined in Eq. (15). This is done successively in
all hidden layers until weighted values get to the output layer.
The single neuron in this layer emits an optimal λ value as the
network’s prediction for a target point. This deep structure is
designed to ensure consistent and optimal prediction of λ value
which is an important factor for precise and fast IK computation of
the snake-like robot.

σ
(
ℵ

l
j

)
=

1

1 − e−ℵ
l
j

(15)

To train the deep network, data points in the snake-like robot’s
workspace are computed using Eq. (3) and set into Eq. (13) to
generate appropriate input–output dataset. During training, the
backpropagation algorithm iteratively process tuples of the dataset
and compares the predicted damping value with the actual value
in the dataset. For each training tuple, the weight and bias at each
neuron are modified to minimize the network’s prediction error.
This is done by propagating the error values from the output layer
backward to the first hidden layer. Error at the output layer (εo) is
calculated using:

εo
k = −η ×

∂ζ

∂ (Σ)
(16)

where εo
k is the error propagated fromoutput layer,η is the learning

rate, a positive constant value, ∂ζ is the cost function at the layer,
and ∂ (Σ) is measure of error that is computed as Σ = σ

(
ℵ

o
k

)
at

the output layer.

Finally, connection weights in the network are updated base
on value of εo

k while the values predicted at the output layer are
evaluated with new weights. These processes continue until the
difference between the actual and predicted damping values in the
training dataset is insignificant. Our design of the DNN has two
essential advantages. First, the non-fully connection between the
input layer and the first hidden layer can ensure that all possible
combinations of the input variables are utilized in deciding the
damping factor for any given target point in the robot’s workspace.
Activations with full connection between these two layers may
act as a sufficient statistic, but it will require additional computa-
tional cost and representation power. Furthermore, this will lead
to information overload which will affect the generalization of the
network during training, and thereby, causing training step to take
longer time. Second, although full connection is avoided between
the input layer and the first hidden layer, but it is adopted between
all hidden layers, and between the last hidden and output layers.
This is to better handle the non-linear relationships that could
exist between the input variables (Px

t , Py
t , Pz

t , ∥Pt∥) and the output
variable (λt). Furthermore, this can enhance the deep network
with learning capability to suitably predict unique damping factors
for different regions of the robot’s workspace.

5. Experimental results

The performance of the proposed IK method is validated on the
eight-link robotic model shown in Fig. 1. The snake-like robot is
simulated using theMatlab Robotics Toolbox (Corke, 2011). Actual
values of the robot’s prototype, explained in Section 3, are used for
the simulation. We assess the proposed IK method using a simula-
tion of the robot so as to separate the effects of backlashes in the
beveled gear at joints of the actual robot from the kinematics error
inherent with the IK method. The method is also implemented
in Simulink (MathWorks R⃝ Inc.) for easy communication with the
Robotics Toolbox. The graphical implementation of the proposed
IK method is shown as Fig. 3. It should be noted that the eight-link
module is capable of spatial rotations in eight orthogonal planes
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Fig. 3. Graphical implementation of the proposed DL-DLS IK method in Simulink.

without offset at any joint. To the best of our knowledge, there is
no method that can accurately solve the IK of such models for the
purpose of real-time operations required for all data points in the
workspace of such robots. Upon successive computations, the joint
vectors obtained are passed to the robotic model for driving tip of
the last link to desired targets.

5.1. Implementation of DNN

The deep network, described in Section 4, is implemented with
Neural Network Toolbox inMatlab 8.3 on a LenovoM4380 desktop
Computer with Intel R⃝ duo processor of Core i3-3420 (2.40 GHz
each). Themanipulable workspace of the eight-link robot is gener-
ated by combining possible values of the joint-vector at an angular
interval of 0.32 rad. On the other hand, the joint-vectors are taken
as input to Eq. (3). To obtain the best damping factors for training
the network, lambda in Eq. (13) is manually adjusted, at a step of
0.1, for possible data points in the robot’sworkspace. This is done to
determine unique damping factor for each point in the workspace.
The unique factors are chosen as best minimizer of Eq. (13). That
is, the factors that require least iteration for each data point and
ensure convergence. Arbitrary trials with several data points in
the workspace show that effective damping factors are between
0.1 and 50. Coordinates of each data point, norm of the data point
from an initial point and the unique damping factor are collected
as dataset for the DNN.With the angular interval of 0.32 rad, a total
of 1,171,875 data points are generated as the robot’s workspace to
model the DNN.

The entire dataset has a dimension of 5×1171875 which in-
cludes coordinates of each data point (Px

t , Py
t , Pz

t ), norm from
origin (∥Pt∥), and the best damping factor (λt ). However, during
preprocessing, damping factor of 6.4% of the entire dataset (75,000
data points) are not well represented in the entire dataset, so they
were removed to enhance the behavioral cloning of the network.
The remaining 80% of the dataset (877,500 data points) is ran-
domly partitioned into 70% training set, 15% validation set, and

15% testing set, respectively. Structures of the original, pruned, and
final workspaces considered during the network setup are shown
in Fig. 4. Due to high diverse and non-linear nature of the huge
dataset, the neural network consists of 11 hidden layers, and each
layer has 15 neurons. The 11 × 15 architecture is chosen after sev-
eral arbitrary trials made to define the best hidden structure that
can well-generalize the network and achieve stable performance
for the remaining data.

5.2. Implementation results

Operation of the proposed IK method starts with receiving
coordinates of a target point or consecutive via points in a desired
trajectory. Euclidean norm of the target (from origin) alongside
with the coordinates of the target point are set as input of the DNN.
The network in turn predicts the best damping factor needed to
precisely solve IK of the point for real-time operation of the robot.
Subsequently, the predicted value is applied to solve Eq. (13) for the
resulting angular values. Finally, the values obtained from the pro-
posed DL-DLS IK method are set to the corresponding joints of the
simulated robot using fkine() — a predefined function in Robotics
Toolbox. This is done to show the final pose of the robotic model.
Similarly, joints of the actual robot are rotated to these angles with
the help of a customized user interface designed in LabVIEW R⃝

(National Instruments). This programming environment is chosen
because of its built-in supports for NI CompactRIO (cRIO-9118)
with FPGA reconfigurable chassis and digital I/O modules which
are used for controlling motor drives at the robot’s joints. Table 1
shows results of the IK method for four data points randomly
chosen in the robot’s workspace. The predicted damping factor,
joint angles, and actual tip points achieved for the data points.
Postures of each data point in both Matlab and prototype of the
eight-link robot are shown in Fig. 5.

The robotics toolbox is employed to verify the actual points
achieved for each data point. Coordinates of the initial position of
last link’s tip in the Matlab plot is (256.48, 0, 0) for each figure.
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Fig. 4. Stages of workspaces used: (a) Original workspace, (b) Pruned workspace, and (c) Final workspace.

Table 1
IK result from DL-DLS based on 4 arbitrary target points.

Id Target position (mm) Predicted
λ-value

Joint angles (deg) Actual tip point (mm)
e⃗ (mm)

X Y Z θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 X Y Z

1 −33.109 −52.032 −125.433 14.36 −84.68 −43.54 104.93 −113.21 113.83 −114.99 113.83 −112.91 −31.821 −51.431 −125.58 0.304
2 183.870 −88.379 −95.767 41.66 0.63 −1.43 −17.59 19.08 −17.59 19.14 −17.59 19.14 183.892 −88.391 −95.791 0.035
3 172.910 152.120 101.260 29.97 28.53 −18.45 7.85 −4.70 7.79 −4.70 7.79 −4.70 172.913 152.066 101.244 0.056
4 −30.658 −17.77 −91.959 25.81 114.45 113.10 −69.73 −114.92 −69.67 −114.45 9.57 −113.92 −30.729 −17.832 −91.962 0.094

For every plot, the IK method uses coordinates of the given target
point and its Euclidian distance from the initial point to determine
an appropriate damping factor that could make the end-effector
converge faster to the target point. It can be clearly seen from
the plots of Fig. 5 that postures from both Matlab plot and actual
robot look similar for each data point in Table 1. Similarly, the error
offset between target and actual points are less than 0.5 mm for all
the data points. This indicates that the accuracy of the proposed
IK method is superior. Furthermore, both simulated and actual
robots in Fig. 5 show different snake poses. Hence, the proposed
snake-like model is capable of accessing target points irrespective
of being farther or closer to the robot’s base in one or more of the
three axes. For instance, it can be seen that the final tip position
closely reached the target points in Fig. 5a, b, and c despite the
points are farther away from the robot’s base. Links of the robotic
model do not overlap for the specific IK solution of the three target
points. Similarly, the proposed IK method can work for data points
closer to base of the snake-like robot as the case of Fig. 5d. These
results show that, the method is capable of steering the snake-like
robot via both free and confined areas. Therefore, the proposed
snake-like robotic can be capable of serpentine movements via
both minimal incision in the abdomen or through natural orifices
such as mouth or anus.

6. Performance evaluations

In this section, evaluations carried out to validate the proposed
IK method are reported.

6.1. Evaluation based on DNN’s prediction

Typically, accuracy and convergence time of the proposed DL-
DLS IK method depends on the damping factor predicted by the
deep network for any given target point in the robot’s workspace.
As a result,we evaluate the performance of the deepnetwork based
on its prediction accuracy (Vargas et al., 2014), which measures
network’s performance according to its mean squared of error
(MSE). As shown in Fig. 6, MSE of the deep network drops rapidly
through the training process. It can be observed from the figure
that, both validation and training error values are roughly similar
throughout the network training process. Hence, prediction accu-
racy of the deep network is very good.

With the training parameters in Table 2, an MSE value of
0.31085 is achieved at 343rd epoch of the training period, exactly
after ten consecutive validation checks. At this point, the train-
ing performance cannot improve further. After several arbitrary
trials, the training parameters in Table 2 produce the best per-
formance with least percent errors of 14.05% for training, 10.93%
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Fig. 5. IK results for arbitrary target points in Table 1 based on predicted λ-value.

for validating, and 7.49% for testing the network. As in Fig. 7a–
c, regression plots of the three phases show there is a consistent
correlation between the actual and predicted damping factors. In
essence, the deep network can facilitate accurate and fast compu-
tation of appropriate joint angles for any data point in the robot’s
workspace.

6.2. Evaluation based on existing IK methods

Performance of the proposed method is also evaluated against
eight existing IK methods. These include four popularly used IK
methods that are based on error damping with least-squares ap-
proach (DLS-based), and another fourmethodswhich are not based
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Fig. 6. Performance plots of the deep network.

Fig. 7. Regression plots of the deep network: (a) Training phase; (b) Validation phase; (c) Testing phase.

Table 2
Optimal parameters for training the deep network.

Id Parameter Value Id Parameter Value

1 Training mode trainbr 4 Marquardt adjustment 1100

2 Performance goal 0.05 5 Maximum validation failures 10
3 Learning rate 0.01 6 Minimum performance gradient 1−10

on DLS. The considered DLS-based approaches are Jacobian with
basic damped least squares (J-DLS), singular value decomposi-
tion of Jacobian with damped least squares (J-SVD-DLS), adaptive
nonlinear least-squares (AN-DLS), and selectively damped least
squares (SDLS). These methods are chosen because of their close
similarity with the proposed DL-DLS IK method. For each method,
analytic Jacobian of the robot is modeled and the IK solutions
are obtained based on the inverse Jacobian algorithm. To avoid
biasness towards any of the methods, the damping value that
provides the best result for each method is used. For J-DLS and
J-SVD-DLS, a constant damping factor (λc ) of 1.1 is used as in Buss
and Kim (2005). This value (λc = 1.1) also gives the best results
for both J-DLS and J-SVD-DLS in this study. However, AN-DLS and
SDLS are implemented as described in Deo and Walker (1992)
and Nakamura and Hanafusa (1986), respectively. The considered
non-DLSmethods for this evaluation are the non-iterative geomet-
ric approach (Omisore, Han, Ren, Zhang and Ivanov, 2017), cyclic
coordinate descent method (Wang & Chen, 1991), fast iterative IK

solver (FABRIK) (Aristidou & Lasenby, 2011), and Jacobian Trans-
pose (J-Trans) (Wolovich & Elliott, 1984), respectively. The non-
iterative geometric method is applied in Omisore, Han, Ren, Zhang
and Ivanov (2017) to solve IK of the snake robot-like robot while
the remaining three methods have been widely used to resolve IK
problems in robotics.

Both categories of the IK methods were implemented for eight-
link model of the simulated snake-like robot. For this evaluation,
1487 data points are randomly selected from the remaining 20%
of the entire dataset that makes up the robot’s workspace. These
include the data points that are not pre-known to the network
as they are neither part of the datasets used for training, validat-
ing, nor testing the network. Finally, each point in the evaluation
dataset is set as target point for the IK methods and the ob-
tained results are stored for further analyses. The evaluation results
and threshold values used to control the iterative methods are
presented.
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Table 3
Evaluation of results of IK methods for the snake-like robot with eight links.

IK methods Reachability measure Number of iterations Execution time (ms) Iterations per ms

Proposed DL-DLS Method 91.59% 33.02 ± 39.60 9.20 ± 16.92 3.59 ± 1.62
J-SVD-DLS (Nakamura & Hanafusa, 1986) 42.97% 87.27 ± 82.18 48.18 ± 29.89 1.81 ± 1.74
SDLS (Buss & Kim, 2005) 82.53% 75.99 ± 92.01 50.26 ± 30.79 1.51 ± 1.17
AN-DLS (Deo &Walker, 1993) 75.04% 94.12 ± 98.02 36.81 ± 17.94 2.56 ± 1.65
J-DLS (Wampler & Leifer, 1988) 41.89% 115.94 ± 95.58 43.93 ± 26.80 2.64 ± 0.92
Non-iterative approach (Omisore et al., 2017) 19.57% 1.00 3.95 ± 1.37 –
Fast iterative IK solver (Aristidou & Lasenby, 2011) 8.16% 348.63 ± 92.01 368.92 ± 135.24 0.95 ± 0.77
Cyclic coordinate descent (Wang & Chen, 1991) 3.87% 482.51 ± 98.02 719.29 ± 186.06 0.67 ± 0.48
J-Trans (Wolovich & Elliott, 1984) 0.00% 500.00 1007.36 ± 13.58 0.49 ± 0.13

Fig. 8. Evaluation of IK methods based on their reachability measure.

6.2.1. Analysis of the evaluation results
Performances of the IK methods are evaluated based on four

metrics namely; reachability measure, execution time, number
of iterations required for convergence, and number of iterations
executed per ms. The results obtained for each metric are given in
Table 3. All methods are implemented as described herein or in the
referred studies. Aside from the non-iterative approach (Omisore,
Han, Ren, Zhang and Ivanov, 2017), other methods are iterative
based. Hence, an admissive error of 0.1 mm is set as threshold for
the kinematic error. Similarly, themaximum iterations allowed for
each data point is set as 500. The latter is used to avoid endlessness
in cases where a given data point is not reachable by an IK method
or such method requires excessive iterations before eventual con-
vergence.

A. Reachability measure
Reachability measure is the percentage ratio of data points

the robot can reach with an IK method upon the thresholds for
maximum kinematic error and iterations. The proposed IKmethod
is compared with existing ones based on their reachability mea-
sures in Fig. 8. It can be seen that DL-DLS method achieves the
highest reachability measure with value of 91.59%. Analytically, it
shows that our method can resolve IK of around 92% of points in
the evaluation dataset. This high accuracy value can be attributed
to performance of the deep network in predicting appropriate
damping factor for each data point. Next to the proposed method
are SDLS and AN-DLS which also achieve reachability measures of
82.53% and 75.04%, respectively. These values can be attributed
to the bounding and switching strategies used when determining
damping factors in the two approaches, respectively. Generally,
analysis of the reachability measures shows that the DLS-based
methods outperform the non-DLS ones.

The non-DLS based methods perform badly in terms of the
reachability measure due to different reasons. Despite the fact
that the non-iterative geometric approach requires only a single
iteration to compute the IK, it is only suited for snake-like robots
with reduced number of links (Omisore, Han, Ren, Zhang and
Ivanov, 2017, Omisore, Han, Ren, Zhang, and Wang, 2017). Also,

FABRIK and CCD, which are iterative geometric methods, result in
low reachability measure due to hard-joint limits of the snake-like
robot. They can only perform better when one of the axial values of
a given target point is close to zero, thereby having the snake-like
robot operating similar to a planar arm robot. Lastly, the Jacobian
transposemethod requiresmore iterations for convergence. In this
evaluation, the 500 iterations set are not sufficient for the non-
DLS methods to minimize the error to the set tolerance value. In
fact, J-Transmethodmakes the robot to start oscillation earlier and
more frequently due to consistent orthogonal joints that connect
the robot’s links (Omisore, Han, Ren, Zhang and Ivanov, 2017).

B. Average iteration and execution time
Performances of the IK methods are analyzed based on average

number of iterations and execution time required by each method
to converge. These metrics are inspected to determine the oscil-
lation and tracking qualities of the IK methods. The non-iterative
geometric method (Omisore, Han, Ren, Zhang and Ivanov, 2017)
is exempted because it does not require multiple iterations, and it
only converges for less than 20% of data points in the dataset. Sim-
ilarly, FABRIK, CCD, and J-Trans are exempted since they achieve
very low reachability measure due to joint limits set for the snake-
like robot. As presented in Table 3, the proposed IK method con-
verges faster than other methods and requires an average of 33.02
(±39.60) iterations to solve IK of a single data point. Compared
with other DLS-based methods, the proposed method requires the
lowest iterations for convergence.With admissible kinematic error
of 0.1 mm and maximum iteration of 500, the proposed method
requires a mean execution time of 9.20 (±16.92) ms to converge
at reachable data points in the evaluation dataset.

Combining the mean execution time with the average number
of iterations required for convergence, more than 3.6 iterations
of the proposed DL-DLS method can be completed in 1 ms, and
an average execution time of 0.24 ms to complete an iteration.
On contrary, many iterations are required by other DLS-based
methods before eventual convergence for some data points. It is
important to stress that J-DLS and AN-DLS require more iterations
to get the robot’s end-effector to converge at coordinates of the
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Fig. 9. Average iterations required and error damping between the proposed and existing DLS-based methods.

target point for the given threshold value of 0.1 mm of kinematic
error. In addition, the proposed DLS-based method is compared
with the existing DLS-based methods with respect to the error
damping progress along the iterations. For this purpose, the mean
values of the kinematic error achieved during the damping process
of the proposed method are plotted against those of the existing
DLS-based methods. As shown in Fig. 9, kinematic error of the
DL-DLS method damps steadily at each iteration unlike what was
obtained from other competing methods. The existing DLS meth-
ods produce unpredicted instabilities along the increasing order of
iteration, even though convergence is eventually achieved. Thus,
the proposed method can drive the robot to successfully track
points in reachable area of the robot’s workspace with smooth
motion and insignificant oscillations of the robot’s links.

6.2.2. Analysis of variations in kinematic error
To further describe the robustness of the proposedmethod over

iterative based ones, different values are set as error thresholds
while solving the robot’s kinematics. The unique tolerance values
used for the controlled trials are [1e−4, 5e−4, 1e−3, 5e−3, 1e−2,
5e−2, 1e−1, 5e−1, 1, 3, 5] mm, while the maximum iteration is
set as 500 for each tolerance value. The non-iterative approach
(Omisore, Han, Ren, Zhang and Ivanov, 2017) is not considered
because it requires only one iteration and errorminimization is not
possible. Average execution times for the iterative IK methods are
computed and plottedwith respect to the corresponding threshold
values. As shown in Fig. 10, the proposed DL-DLS method tracks
and converges to targets faster than other iterativemethods for the
different threshold values set as the admissive kinematic error.

In a moderate case, with tolerance value of 0.1 mm, an aver-
age of 9 ms is required for convergence, while a strict case with
tolerance value of 1e−4 mm requires an average execution time
of 0.28 s. Next to the proposed method, J-SVD-DLS requires ap-
proximately 48.2 ms and 4.02 s in similar situations, respectively.
With maximum iterations of 500 and error tolerance of 5 mm, J-
Trans method cannot converge the robot’s end-effector below the
admissive kinematic error. The mean execution time required to
solve IK of a single data point remains, approximately, 10.1 s for
all the admissive error values. Overall, it can be seen that the DLS-
based methods perform better than the non-DLS methods. The

best cases of the latter are obtained for FABRIK, which can keep
the robot’s end-effector below the admissive error within 4 s for
tolerance values of [1e−1, 5e−1, 1, 3, 5] mm.

7. Conclusions and future works

A major challenge in radiosurgery remains precise delivery of
pre-planned treatment doses on cancerous tissues in the abdom-
inal areas. To minimize the aftermath effects of external radi-
ation systems, we present a new snake-like robot for minimal
invasive radiosurgery of gastrointestinal cancer, and proposed a
deeply-learnt DL-DLS method for IK of the robot. The proposed IK
method uses DLS of analytical Jacobian of the robot’s end-effector
to determine appropriate joint-vector for desired points. To predict
optimal damping factor for given data points, a DNN was trained
with a huge dataset of 877,500 data points. Implementation of the
proposed method with an eight-link model of the snake-like robot
shows the method has a very high reachability and convergence
measures. Furthermore, evaluation results show that, the proposed
method is better than existing IK methods. A major contribution
of this approach is total avoidance of singular configurations in
the robot’s workspace, and yet, the end-effector converges to the
desired data points in a very fast and precise manner. These can
be attributed to the adeptness of the DNN’s structure built for
prediction of optimal damping factors.

In this study, DL is employed for prediction of appropriate
damping factor needed for solving IK of spatially snake-like robots.
The proposed DL-DLS method gains prediction knowledge by
deeply learning nonlinear functions that can be defined with the
four features of data points in the robot’s workspace. Hence, pre-
dictions were based on knowledge discovery through supervised
learning. This behavioral cloning approach cannot adapt to com-
pletely new situations with surmountable deviations from the
knowledge gained during the supervised learning. Dynamic model
of the snake-like model shall be considered along with important
design constraints, such as gear error and torques, acting at each
joint of the robot. Finally, the models will be extended for path
planning and collision avoidance during navigation of the robot
along specified trajectories.
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Fig. 10. Analysis of mean execution time for different threshold values.
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