ANTIOXIDANT ENZYMES AND HISTOPATHOLOGICAL BIOMARKERS OF EXPOSURE TO MONOCYCLIC AROMATIC HYDROCARBONS IN CLARIAS GARIEPINUS (CATFISH) AND EUDRILUS EUGENIAE (EARTHWORM).

BY

DOHERTY, VICTORIA FUNMILAYO

B.Sc Zoology (1999) ABU, M.Sc Zoology (2003) UNILAG

Matriculation Number 019077002

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES OF THE UNIVERSITY OF LAGOS, AKOKA, LAGOS, NIGERIA, FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) DEGREE IN ENVIRONMENTAL TOXICOLOGY AND POLLUTION MANAGEMENT.

MAY 2013

ANTIOXIDANT ENZYMES AND HISTOPATHOLOGICAL BIOMARKERS OF EXPOSURE TO MONOCYCLIC AROMATIC HYDROCARBONS IN CLARIAS GARIEPINUS (CATFISH) AND EUDRILUS EUGENIAE (EARTHWORM).

BY

DOHERTY, VICTORIA FUNMILAYO

B.Sc Zoology (1999) ABU, M.Sc Zoology (2003) UNILAG

Matriculation Number 019077002

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES OF THE UNIVERSITY OF LAGOS, AKOKA, LAGOS, NIGERIA, FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) DEGREE IN ENVIRONMENTAL TOXICOLOGY AND POLLUTION MANAGEMENT.

MAY 2013

DECLARATION

This work, titled "Antioxidant Enzymes and Histopathological Biomarkers of Exposure to Monocyclic Aromatic Hydrocarbons in *Clarias gariepinus* (Catfish) and *Eudrilus eugeniae* (Earthworm)", submitted to the School of Postgraduate Studies, University of Lagos, Lagos, Nigeria, for the award of Doctor of Philosophy in Environmental Toxicology and Pollution Management, is an original research carried out by DOHERTY, Victoria Funmilayo in the Department of Zoology, University of Lagos, under the supervision of Dr A.A. Otitoloju and Dr J.K. Saliu, Department of Zoology, University of Lagos.

This work has not been submitted previously, in whole or part, to qualify for any other academic award.

Dr A.A. OTITOLOJU Department of Zoology, University of Lagos, Akoka, Lagos, Nigeria.

Dr J.K. SALIU

Department of Zoology, University of Lagos, Akoka, Lagos, Nigeria.

DOHERTY, VICTORIA FUNMILAYO (Candidate)

DEDICATION

This work is dedicated to God the Father, God the Son and God the Holy Spirit who made this possible; and to my husband and children for their support and encouragement.

ACKNOWLEDGEMENTS

I will like to express my deepest appreciation to my supervisor, teacher and mentor, Dr Adebayo Otitoloju, who challenged and encouraged me to put in my best throughout the period of this research. His immense knowledge, constructive comments and motivation helped me during the time of research and writing of this thesis. I am also grateful to him for critically editing this thesis. I appreciate Dr J.K. Saliu, my second supervisor, for the continuous support, contributions and guidance during this research and for reading through my work. I consider it a rare privilege to have worked with both supervisors.

I wish to thank the Head of Department, Zoology, Prof. R.I. Egomnwan, former HOD, Prof. W.A. Makanjuola, the PG Coordinator Dr E.T. Idowu for their support and contributions during the period of this research work; Prof O.A. Otubanjo, for taking time out from her busy schedule to read my work. My appreciation goes to Prof. A.A. Adekunle, for encouraging me during the difficult moments of this Ph.D program. I appreciate Dr O.S. Odesanmi for the contributions made in this thesis and Prof. W.O. Odiete, for always being there for me.

I acknowledge with appreciation, the World Bank Unilag Step-B Innovators of Tomorrow research grant received by me for this study.

I am grateful to Mr Segun Abisoye, for his assistance in the statistical analysis of this work; Mr Wale Oyebadejo, for assisting me with the histopathology study, and Dr Lawal of the Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, for assisting in the interpretation of the histopathology results. I appreciate Mr Sunday Adenekan, for guidance with the biochemical analysis, and Dr Ayeni in Geography Department, University of Lagos, for all his assistance in mapping the sampling sites.

This appreciation will be incomplete without mentioning the following people for their help, encouragement and goodwill in the course of my study: Prof. M.O.Akinola, Mrs Betty Edeghagba, Mr Akeju, Dr Abayomi Akinfemi, Mrs Azeezah Alafia, Mr Afeez Adetoro, Mr Nnamdi Ameaze, Mr Fouad Adetoro, Mrs Tope Sogbanmu, Mrs Idowu Aneyo, Miss Debola Bawa-Allah, Miss Kehinde Osibajo, Mrs Adesola Ajayi and Mrs Taiwo Onafuwa. I want to say thank you to Dr U.C. Kanife and Dr L.N. Ofodile for encouraging me in every way and praying along with me.

Special thanks goes to my family members: My late Grandmother Mrs Dorcas Ibiyeye, who saw me begin this research, My mum Mrs C.I. Jegede and Papu, Engr. Victor Jegede, Mr. Derin Jegede and Dr.(Mrs)M.K Ladipo for encouraging me. My appreciation goes to Mrs Bukky Ogunjimi, Mrs Folake Jimoh, Mr Mayowa Jegede, Mr Gabriel Olu Bello, Barrister (Mrs) Abiodun Amupitan, Mrs Ronke Ibitoye, Mr Tunde Jegede, Mr Ayo Momoh, Miss Ibilola Ladejo, Taiwo and Kehinde Ladejo, Yemisi Jegede, Mr Ayo Dinyo and Mrs Bridget Etuk for their encouragement, support and prayers.

My special gratitude goes to my husband, confidant and mentor, Mr Olumuyiwa Doherty, who has been a great source of motivation and inspiration. I appreciate my children: Morenike, Oluwaseun, Tolulope and Oluwatimilehin, for the prayers and understanding at times when mom was "too busy" to take care of them. Without your support, it would have been impossible for this dream to become a reality. Finally, I give God all the glory for taking me through this programme from the beginning, up to this point.

TABLE OF CONTENT

Title pa	age	i	
Title pa	age	ii	
Declar	ation	iii	
Dedica	tion	iv	
Acknow	wledgements	V	
Table of	of Contents	vii	
List of	Figures	xvii	
List of	Plates	xxii	
List of	List of Tables		
Definition of Terms		xxvi	
List of Abbreviations		xxviii	
Abstract		XXX	
Chap	ter One		
1.0	Introduction	1	
1.2	Statement of the problem	5	
1.3	Aim/Objectives of the Study	6	
	1.3.1 Aim of Study	6	
	1.3.2 Objectives of Study	7	
1.4	Significance of Study	8	

Chapter Two

2.0	Literature Review	10
2.1	Incidences of Petroleum Product Spillage in Nigeria	10
2.2	Hydrocarbon Contamination of the Lagos Lagoon	13
2.3	Biological Effects of Benzene, Toluene, Ethylbenzene and Xylene	16
2.4	Biomarkers of Oxidative Stress	18
2.5	Biochemical Biomarkers	19
2.6	Non Enzymatic ROS Scavengers	20
	2.6.1 Level of Lipid Peroxidation as indicators of oxidative damage	20
	2.6.2 Glutathione (GSH) Activity	21
2.7	Enzymatic ROS Scavenging Mechanisms	22
	2.7.1 Glutathione S-Transferases (GST) Activity	23
	2.7.2 Superoxide Dismutase (SOD) Activity	23
	2.7.3 Catalase Activity	24
2.8	Biomonitoring using Histopathological Biomarkers	25
	2.8.1 Histopathology of Liver	25
	2.8.2 Histopathology of Gill	26
	2.8.3 Gonad	26
2.9	Ecological indices as a tool for assessing pollution status in water bodies	27
2.10	Usefulness of Biomarkers in Environmental Monitoring	28

Chapter Three

3.0	Mater	ials and Methods	32
3.1	Field	Studies - Aquatic Ecosystem	32
	3.1.1	Description of Study Site (Lagos Lagoon)	32
	3.1.2	Sampling Design	34
	3.1.3	Sampling Operations	34
	3.1.4	Collection of Surface Water Samples	36
	3.1.5	Measurements of Physico-Chemical Parameters	36
	3.1.6	Collection of Sediment	36
	3.1.7	Collection of Fish	36
	3.1.8	Collection of Macrobenthic Invertebrates	37
	3.1.8.2	1 Macrobenthic Invertebrate Analysis	37
	3.1.8.	1.1 Sorting	37
	3.1.8.2	1.2 Identification	37
3.2	Field 3	Studies - Terrestrial Ecosystem	38
	3.2.1	Description of Study Site (Ijegun)	38
	3.2.2	Sampling Design	38
	3.2.3	Sampling Operations	40
	3.2.4	Collection of Soil	43
	3.2.5	Collection of Ground Water	43
	3.2.6	Collection of Earthworms	44
	3.2.7	Physico-Chemical Analysis of Samples	44

	3.2.7.1 Determination of Heavy Metals	44
	3.2.7.2 THC and BTEX analysis of samples using standard	
	methods ASTM D 2887-93 and US EPA method 1664	45
	3.2.8 Quality Assurance	45
3.3	Laboratory Studies	46
	3.3.1 Test Chemicals	46
	3.3.2 Test Animals (Sources and Collection)	46
	3.3.3 Acute Toxicity Studies	48
	3.3.3.1 Assessment of Quantal Response (Mortality)	50
	3.3.3.2 Measurements of physico – chemical parameters of test media (water)	50
	3.3.3.3 Measurements of physico-chemical parameters of test media (soil)	51
	3.3.4 Chronic Toxicity Studies	51
	3.3.4.1 Semi – Static Bioassay Technique	51
	3.3.4.2 Sublethal Concentrations	52
	3.3.4.3 Collection of Samples	53
	3.3.4.4 Preparation of Homogenate	54
	3.3.4.5 Total Protein Estimation	54
	3.3.4.6 Measurement of antioxidant enzymes and non-enzymes	54
	3.3.4.6.1 Superoxide Dismutase (SOD) Enzyme Assay	55
	3.3.4.6.2catalase Enzyme Assay	55
	3.3.4.6.3 Determination of Glutathione S-Transferase (GST)	56
	3.3.4.6.4 Malondialdehyde (Lipid Peroxidation)	57
	3.3.4.6.5 Glutathione (GSH)	57

3.3.4.7 Histopathology	58
3.3.5 Statistical Analysis	58
3.3.5.1 Probit Analysis	58
3.3.5.2 Analysis of Data by Analysis Of Variance (Anova)	59

Chapter Four

4.0	Results		
	4.1	Field Studies: Aquatic Ecosystem	60
	4.1.1	Distribution of Physico-Chemical Parameters in the Lagos lagoon	
		surface water during the wet seasons of 2009 and 2010 sampling year	60
	4.1.2	Distribution of BTEX in water and sediment from the Lagos lagoon	64
	4.1.3	Distribution Of Total Hydrocarbon Content In Water and	
		sediment samples collected from The Lagos lagoon	69
	4.1.4	Seasonal Variation Of Total Hydrocarbon content in sediment and	
		water samples collected from the Lagos lagoon	72
	4.1.5	Distribution of macrobenthic invertebrate communities of the	
		Lagos lagoon	77
	4.1.5.1	Diversity of macrobenthic invertebrate in the study stations of the	
		Lagos lagoon	79
	4.1.5.2	2 Spatial distribution of major macrobenthic invertebrate species in	
		the sampled stations	81
	4.1.5.3	3 Seasonal variations in the composition of macrobenthic	
		invertebrates in the sampled stations of the lagos lagoon	87

	4.1.5.4	4 Relationship between hydrocarbon concentration and fauna indices	90
	4.1.61	Particle sizes of sediment from the Lagos lagoon	93
4.2	Field	Studies: Terrestrial Ecosystem	96
	4.2.1	Distribution of physico-chemical parameters of groundwater	
		samples in Ijegun during the 2009 and 2010 sampling year	96
	4.2.2	Distribution of BTEX compounds in Ijegun groundwater and	
		soil in 2009 and 2010	99
	4.2.3	Distribution of THC in groundwater samples collected around the	
		oil explosion impacted area of Ijegun	102
	4.2.4	Distribution Of THC In Soil Samples Collected Around The	
		Oil Explosion Impacted Area Of Ijegun	106
	4.2.5	Seasonal variation of total hydrocarbon content in groundwater	
		and soil samples collected from the Lagos lagoon	108
4.3	Labor	atory Studies	112
	4.3.1	Acute Toxicity Of BTEX Compounds (Toxicity Ranking	
		Order Of Test Compounds) Against Each Test Species	112
	4.3.1.1	Acute Toxicity of BTEX compounds against Clarias gariepinus	112
	4.3.1.2	2 Acute Toxicity of BTEX compounds against Eudrilus eugeniae	112
	4.3.1.3	3 Relative susceptibility (responses) of test animal species to BTEX	
		compounds	112
	4.3.1.4	4 Physico-chemical conditions in bioassay during toxicity testing	117
	4.3.2	Chronic Toxicity Studies	119
	4.3.2.1	Antioxidant Enzymes And Non Enzymes activity in the organs	

of Clarias gariepinus exposed to sublthal concentrations of benzene,	
toluene, ethylbenzene and xylene	119
4.3.2.1.1 Superoxide Dismutase Activity in the Gills	119
4.3.2.1.2 Superoxide Dismutase Activity in the Liver	121
4.3.2.1.3 Catalase Activity in the Gills	123
4.3.2.1.4 Catalase Activity in the Liver	125
4.3.2.1.5 GST Activity in the Gills	127
4.3.2.1.6 GST activity in the livers	129
4.3.2.1.7 Level of GSH in the gills	131
4.3.2.1.8 Level of GSH in the liver	133
4.3.2.1.9 MDA in the gills	135
4.3.2.1.10 MDA in the livers	137
4.3.2.2 Antioxidant enzymes and non enzymes in Eudrilus eugeniae exposed	
to sublethal concentrations of benzene, toluene, ethylbenzene and xylene	139
4.3.2.2.1 Superoxide Dismutase (SOD) Activity	139
4.3.2.1 Antioxidant enzymes and non enzymes activity in the organs	
of Clarias gariepinus exposed to sublthal concentrations of benzene,	
toluene, ethylbenzene and xylene	142
4.3.2.1.1 Superoxide Dismutase activity in the gills	142
4.3.2.2.2 Catalase (CAT) activity	142
4.3.2.2.3 Glutathione S-Transferase (GST) activity	142
4.3.2.2.4 Glutathione Level (GSH)	143
4.3.2.2.5 Malondialdehyde Activity	144

4.3.2.3 Histopathological Studies in Eudrilus euginiae	144
4.3.2.3.1 Control	144
4.3.2.3.2 Hispathological changes in the body of <i>Eudrilus euginiae</i> exposed	
to low concentration of BTEX compounds after 28 days	145
4.3.2.3.3 Hispathological changes in the body of <i>Eudrilus euginiae</i> exposed	
to high concentration of BTEX compounds after 28 days	148
4.3.2.4 Histopathological studies in gills of Clarias gariepinus	150
4.3.2.4.1 Control	150
4.3.2.4.2 Histopathological changes in the gills of <i>Clarias gariepinus</i> exposed	
to $1/100^{\text{th}}$ 96hr LC ₅₀ low sublethal concentration of BTEX	
compounds after 60 days	150
4.3.2.4.3 Hispathological changes in the gills of <i>Clarias gariepinus</i> exposed to	
$1/10^{\text{th}}$ 96hr LC ₅₀ (high) sublethal concentration of BTEX	
compounds after 60 days	153
4.3.2.5 Histopathological studies in livers of Clarias Gariepinus	155
4.3.2.5.1 Control	155
4.3.2.5.2 Histopathological changes in the livers of <i>Clarias gariepinus</i> exposed	
to $1/100^{\text{th}}$ 96hr LC ₅₀ low sublethal concentration of BTEX	
compounds after 60 days	155
4.3.2.5.3 Hispathological changes in the livers of <i>Clarias gariepinus</i> exposed	
to $1/10^{\text{th}}$ 96hr LC ₅₀ high sublethal concentration of BTEX	
compounds after 60 days	158
4.3.2.6 Histopathological studies in gonads of Clarias gariepinus	160

	4.3.2.6.1 Control	160
	4.3.2.6.2 Histopathological changes in the gonads of Clarias gariepinus	
	exposed to $1/100^{\text{th}}$ 96hr LC ₅₀ low sublethal concentration of BTEX	
	compounds after 60 days	160
	4.3.2.6.3 Hispathological changes in the gonads of Clarias gariepinus exposed	
	to $1/10^{\text{th}}$ 96hr LC ₅₀ high sublethal concentration of BTEX	
	compounds after 60 days	163
4.4	Identified enzymatic and non enzymatic biomarkers in C. nigrodigitatus	
	and T. zilli collected from different stations of the Lagos lagoon	165
	4.4.1 SOD in the liver and gills of fish from the lagoon	165
	4.4.2 CAT in the liver and gills of fish from the lagoon	168
	4.4.3 GST in the liver and gills of fish from the lagoon	170
	4.4.4 GSH in the livers and gills of fish from the lagoon	172
	4.4.5 MDA in the livers and gills of fish from the lagoon	174
4.5	Identified histopathological biomarkers in C. nigrodigitatus and T. zilli collected	
	from different stations of the Lagos lagoon	176
4.6	Identified enzymatic, non enzymatic and histopathological biomarkers	
	in Eudrilus eugeniae collected from different stations around impacted	
	areas of Ijegun	180
	4.6.1 SOD activity	180
	4.6.2 CAT activity	182
	4.6.3 GST activity	182
	4.6.4 Level of GSH	184

	4.6.5	Level of MDA	184
	4.6.6	Histopathological alterations observed in earthworms collected	
		from Ijegun	184
СНА	PTER	RFIVE	
5.0	Discu	ssion	187
	Concl	usion	207
	Recon	nmendations	208
	Summ	ary of Findings	209
	Contri	butions to Knowledge	212
	Refere	ences	213
	Apper	ndices	253

LIST OF FIGURES

FIGUI	FIGURES	
3.1:	Map of a section of the Lagos lagoon showing the sample stations.	33
3.2:	Map of oil explosion impacted area of Ijegun, Lagos State, showing	
	the sampled stations.	39
4.1:	Mean concentrations of BTE compounds in surface water samples ($\mu g/l$)	
	collected From different stations of the Lagos lagoon in 2009 and 2010.	65
4.2:	Mean concentrations of xylene and Total BTEX compounds in surface	
	water samples (μ g/l) collected from different stations of the Lagos	
	lagoon in 2009 and 2010.	66
4.3:	Mean concentrations of BTE compounds In sediment collected from	
	different stations of the Lagos lagoon.	67
4.4:	Mean concentrations of xylene and total BTEX compounds in sediment	
	collected from different stations of the Lagos lagoon.	68
4.5:	Mean value of thc (mg/kg) in sediment samples collected from	
	different stations of the Lagos lagoon in wet and dry seasons	
	2009 and 2010.	70
4.6:	Mean value of THC (mg/l) in surface water samples collected from	
	different stations of the Lagos lagoon in wet and dry seasons	
	2009 and 2010	71
4.7:	Seasonal variation in the concentration of total hydrocarbon in sediment	
	samples collected from different stations of the Lagos lagoon in 2009 and 2010) 73
4.8:	Seasonal variation in the concentration of total hydrocarbon in	

	surface water samples collected from different stations of the	
	Lagos lagoon in 2009 and 2010.	74
4.9:	Comparison between the mean values THC in sediment and water	
	samples collected from different stations of the Lagos lagoon	
	in 2009 and 2010	76
4.10:	Percentage composition of mollusca, arthropoda and annelidain the study	
	stations at the Lagos lagoon in 2009 and 2010.	82
4.11:	Spatial variation in the density of major molluscan groups in the	
	study stations at the Lagos lagoon in 2009 and 2010.	83
4.12:	Spatial variation in the density of major annelida groups in the	
	study stations at the Lagos lagoon in 2009 and 2010.	85
4.13:	Spatial variation in the density of major arthropoda groups in	
	the sampled stations at the Lagos lagoon in 2009 and 2010.	86
4.14:	Variations in seasonal density of macrobenthic invertebrates	
	species in the study stations of the Lagos lagoon.	88
4.15:	Variation in the abundance of benthic macroinvertebrates in the	
	sampled stations in 2009 and 2010.	89
4.16:	Relationship between abundance of macrobenthic invertebrates	
	and THC concentration in sediment in 2009.	91
4.17:	Relationship between abundance of macrobenthic invertebrates	
	and THC concentration in sediment in 2010	91
4.18:	Relationship between abundance of macrobenthic invertebrates	
	and THC concentration in water in the Lagos lagoon in 2009.	92

4.19:	Relationship between abundance of macrobenthic invertebrates	
	and THC concentration in water in the Lagos lagoon in 2010	92
4.20:	Percentage sand, silt and clay at the study Stations in the Lagos lagoon in 2009	94
4.21:	Percentage sand, silt and clay at the study stations in the Lagos lagoon in 2010	95
4.22:	Mean concentrations of BTE compounds in groundwater samples collected	
	from stations in different buffer zones away from the point of explosion	
	in 2009 and 2010.	101
4.23:	Mean concentrations of xylene and total BTEX compounds in groundwater	
	samples collected from stations in different buffer zones away from the	
	point of explosion in 2009 and 2010	101
4.24:	Mean concentrations of BTE compounds in soil samples collected from	
	stations in different buffer zones away from the point of explosion in	
	2009 and 2010.	103
4.25:	Mean concentrations of xylene and total BTEX compounds in soil samples	
	collected from stations in different buffer zones away from the point of	
	explosion in 2009 and 2010.	104
4.26:	Mean value of THC (mg/l) in groundwater samples collected from different	
	buffer Zones away from the explosion point in Wet and dry seasons of	
	2009 and 2010. W- Wet season; D-dry season	105
4. 27:	Mean value of thc (mg/kg) in ijegun soil samples collected from different	
	buffer zones away from the explosion point in wet and dry seasons 2009	
	and 2010. w-wet season; d- dry season	107
4.28:	Seasonal variation in the values of THC in groundwater samples collected	

xix

	from different locations around the oil impacted area in Ijegun (2009/2010).	109
4.29:	Seasonal variation in the values of THC in soil samples collected from	
	different locations around the oil impacted area in Ijegun (2009/2010).	111
4.30:	The effect of sub lethal concentrations of BTEX compounds on the activity	
	of superoxide dismutase (sod) in the gills of Clarias gariepinus.	120
4.31:	The effect of sub lethal concentrations of BTEX compounds on the activity	
	of superoxide dismutase (SOD) in the liver of Clarias gariepinus.	122
4.32:	The effect of sub lethal concentrations of BTEX compounds on the activity	
	of catalase (CAT) in the gills of <i>Clarias gariepinus</i> .	124
4.33:	The effect of sub lethal concentrations of BTEX compounds on the activity	
	of catalase (CAT) in the livers of <i>Clarias gariepinus</i> .	126
4.34:	The effect of sub lethal concentrations of BTEX compounds on the activity	
	of Glutathione S-Transferase (GST) in the gills of Clarias gariepinus.	128
4.35:	The effect of sub lethal concentrations of BTEX compounds on the	
	activity of Glutathione S-Transferase (GST) in the livers of Clarias gariepinus	130
4.36:	The effect of sub lethal concentrations of BTEX compounds on the levels	
	of Glutathione (GSH) in the gills of Clarias gariepinus.	132
4.37:	The effect of sub lethal concentrations of BTEX compounds on the levels	
	of Glutathione (GSH) in the livers of Clarias gariepinus.	134
4.38:	The effect of sub lethal concentrations of BTEX compounds on	
	the levels of malondialdehyde (MDA) in the gills of Clarias gariepinus.	136
4.39:	The effect of sub lethal concentrations of BTEX compounds on	
	the levels of Malondialdehyde (MDA) in the livers of Clarias gariepinus.	138

4.40:	The activity of SOD in the liver and gills of <i>C. nigrodigitatus</i> (1) and <i>T. zilli</i> (2)		
	from Iddo, Atlas Cove (AC), Apapa (AP) and Unilag (ULAG) stations of		
	the Lagos lagoon.	167	
4.41:	The activity of CAT in the livers and gills of <i>C. nigrodigitatus</i> (1) and		
	T. zilli (2) from Iddo, Atlas Cove (AC), Apapa (AP) and Unilag (ULAG)		
	stations of the Lagos lagoon.	169	
4.42:	The activities of GST in the liver and gills of <i>C. nigrodigitatus</i> (1) and		
	T. zilli (2) from Iddo, Atlas Cove (AC), Apapa (AP) and Unilag (ULAG)		
	stations of the Lagos lagoon.	171	
4.43:	The levels of GSH in the liver and gills of <i>C. nigrodigitatus</i> (1) and <i>T. zilli</i> (2)	2)	
	from Iddo, Atlas Cove (AC), Apapa (AP) and Unilag (ULAG) stations		
	of the Lagos lagoon.	173	
4.44:	The levels of MDA in the liver and gills of <i>C. nigrodigitatus</i> (1) and <i>T. zilli</i> ((2)	
	from Iddo, Atlas Cove (AC), Apapa (AP) and Unilag (ULAG) stations		
	of the Lagos lagoon.	175	
4.45:	SOD activity in the earthworms collected from impacted areas of Ijegun.		181
4.46:	CAT activity in the earthworms collected from impacted areas of Ijegun.		183
4.47:	GST activity in the earthworms collected from impacted areas of Ijegun.		183
4.48:	Level of GSH in the earthworms collected from impacted areas of Ijegun.		185
4.49:	Level of MDA in the earthworms collected from impacted areas of Ijegun.		185

LIST OF PLATES

PLATES		PAGES
1:	Histological section of the control earthworm	146
2-5:	Histopathological (T.S) effects of BTEX (1/100 th 96hLC ₅₀) after	
	exposure of Eudrilus euginiae for 28 days (H & E X400).	147
6-9:	Histopathological (T.S) effects of BTEX (1/10 th 96hLC ₅₀)	
	after exposure of <i>Eudrilus euginiae</i> for 28 days (H & E X400).	149
10:	Histological section of the control gill.	151
11-14:	Histopathological (T.S) effects of BTEX (1/100 th 96hLC ₅₀)	
	after exposure of gill of Clarias gariepinus for 60 days (H & E X400).	152
15-18:	Histopathological (T.S) effects of BTEX ($1/10^{\text{th}} 96hLC_{50}$) after exposu	ire
	of gill of Clarias gariepinus for 60 days (H & E X400).	154
19:	Histological section of control liver.	156
20-23:	Histopathological (T.S) effects of BTEX (1/100 th 96hLC ₅₀)	
	after exposure of Clarias gariepinus liver for 60 days (H & E X400).	157
24-27:	Histopathological (T.S) effects of BTEX ($1/10^{th}$ 96hLC ₅₀) after	
	exposure of Clarias gariepinus liver for 60 days (H & E X400).	159
28:	Histological section of control Gonad	161
29-32:	Histopathological (T.S) effects of BTEX (1/100 th 96hLC ₅₀)	
	after exposure of Clarias gariepinus gonad for 60 days (H & E X400).	162
33-36:	Histopathological (T.S) effects of BTEX (1/10 th 96hLC ₅₀)	
	after exposure of Clarias gariepinus gonad for 60 days (H & E X400). xxii	164

37-40:	Histopathological (T.S) alterations in fish gonads collected from	
	the lagoon. (H & E X400).	177
41-44:	Histopathological (T.S) alterations in fish gills collected from	
	the lagoon. (H & E X400).	178
45-48:	Histopathological (T.S) alterations in fish livers collected from	
	the lagoon. (H & E X400).	179
49-52:	Histopathological (T.S) alterations in earthworms collected from	
	the impacted area of Ijegun. (H & E X400).	186

LIST OF TABLES

TABLES		PAGES
3.1:	Geographical Positioning System reading of the sampling stations	35
3.2:	Sampling stations divided into buffer zones	41
3.3:	Global Positioning System reading of the sampling stations	42
4.1:	Mean values of physico – chemical parameters of water at the study	
	stations during the wet seasons in the Lagos lagoon (2009 and 2010)	61
4.2:	Mean values of Physico – Chemical parameters of water at the study	
	stations during the dry seasons in the Lagos lagoon (2009 and 2010)	62
4.3:	Overall species composition in all the sampling stations	
	at the Lagos Lagoon (2009 and 2010).	78
4.4:	Diversity of macrobenthic invertebrates in the study stations	
	of the Lagos lagoon (2009-2010)	80
4.5:	Physico – chemical parameters measured in the groundwater	
	samples in Ijegun in 2009	97
4.6:	Physico – chemical parameters measured in the groundwater	
	samples in Ijegun in 2010	98
4.7:	Relative acute toxicity of benzene, toluene, ethylbenzene and	

	xylene acting singly against Clarias gariepinus	113
4.8:	Relative acute toxicity of benzene, toluene, ethylbenzene and	
	xylene acting singly against Eudrilus eugeniae	114
4.9:	Relative susceptibility of the test animals against BTEX compounds.	116
4.10:	Physico-chemical characteristics of the soil substrate used	
	for the earthworm bioassay	118
4.11:	Biochemical responses of Eudrilus eugeniae exposed to benzene	
	and toluene contaminated soil	140
4.12:	Biochemical responses of Eudrilus eugeniae exposed to ethyl benzene	
	and xylene contaminated soil	141

DEFINITION OF TERMS

Antioxidant – It is a substance capable of preventing or slowing the oxidation of other molecules, protect against toxicity by trapping free radicals and preventing reaction with reactive oxygen species.

Aromatic hydrocarbons - Hydrocarbon that contains one or more benzene rings that are characteristic of the benzene series of organic compounds.

Atresia – the process of oocyte and follicle resorption altering the oocyte structure as an indicator for the destruction and resorption of oocytes.

Biochemical biomarkers- Biochemical changes associated with pollutant exposures which include: (1) the inhibition or induction of enzymes, (2) induction of specific enzymes involved in the metabolism of pollutants and the appearance of associated metabolites.

Bioindicators - An organism giving information on the environmental conditions of its habitat by its presence, its absence or its behavior.

Biomarkers – A biochemical, cellular, physiological or behavioural variation that can be measured in tissue or body fluid samples at the level of the whole organism that provides evidence of exposure to and/or effects of one or more chemical pollutants.

Biomarkers of effects- includes measurable biochemical, physiological or other alterations within tissues or body fluids of an organism that can be recognized as associated with an established or possible health impairment or disease;

Biomonitoring – The monitoring of the organisms that live in a particular environment in order to assess the continuing quality of the ecosystem.

BTEX- Is the term used for Benzene, Toluene, Ethylbenzene and Xylene, volatile aromatic compounds typically found in petroleum product such as gasoline and diesel fuel.

Histopathology - The microscopic study of abnormal tissue and organs at the cellular level.

Hyperplasia- An abnormal increase in the number of cells in an organ or a tissue with consequent enlargement.

 LC_{50} - Experimentally derived concentration of test substance that is estimated to kill 50 percent of a test population during continuous exposure over a specified period of time.

Oil depots - An industrial facility for the storage of oil and or petrochemical products and from which, they are transported to end users or further storage facilities

Oxidative stress - The imbalance between the generation and the neutralization of ROS by antioxidant mechanisms within an organism.

Reactive oxygen species - Species such as superoxide, hydrogen peroxide, and hydroxyl radical molecules and ions of oxygen that have an unpaired electron, thus rendering them extremely reactive.

Right(s) of way - Designated land around oil pipelines or oil industry installations to facilitate access to and protection of oil industry assets.

Tank farms – Large tanks used exclusively for storing petroleum in an area.

Water soluble fraction - Is the aqueous solution which is formed when oil and water are brought into contact or the fraction of oil that dissolves into water that contacts aquatic organisms.

Xenobiotics - Is a chemical which is found in an organism but which is not normally produced or expected to be present in it. It can also cover substances which are present in much higher concentrations than are usual.

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance
AAS	Atomic Absorption Spectrophotometer
ATSDR	Agency for Toxic Substances and Disease Registry
АРНА	American Public Health Association
EGASPIN	Environmental Guidelines and Standards for the Petroleum Industry in Nigeria
GSH	Glutathione
LC ₅₀	Lethal Concentrations
MDA	Malondialdehyde
Mg/kg	Milligramme/ Kilogramme
mM	Millimolar
O_2^-	Oxygen radical
.OH	Hydroxyl radical
pН	Potency of hydrogen
ROS	Reactive Oxygen Species
SPSS	Statistical Package for the Social Sciences
U	Unit of activity
µg/l	Microgram per Litre
WHO	World Health Organisation
BTE	Benzene, Toluene and Ethylbenzene
BTEX	Benzene, Toluene Ethylbenzene and Xylene
NIOMR	National Institute for Oceanography and Marine Research
ROW	Right of way

xxviii

MetHb	Methaemoglobin
USEPA	United States Environmental Protection Agency
CAT	Catalase
GST	Glutathione -S- Transferase
TDS	Total Dissolved Solid
Zn	Zinc
Ni	Nickel
Pb	Lead
ASTM	American Society for Testing and Materials
OECD	Organisation for Economic Cooperation and Development
THC	Total hydrocarbon content
TCA	Tricarboxylic acid
TBA	Thiobarbituric acid

ABSTRACT

The widespread distribution of petroleum products arising from the rapid growth of the petroleum industry in Nigeria has resulted in the pollution of the environment through oil spills involving leakages from tankers, pipelines, tank farms and dumping of waste petroleum products. This study was aimed at identifying histopathological alterations and antioxidants defence systems in *Clarias gariepinus* (catfish) and *Eudrilus eugeniae* (earthworm) that can be used as a good battery of biomarkers for early detection of pollution associated with petroleum hydrocarbon and that can be used in monitoring programmes in Nigeria. The impacts and distribution of major toxic components (BTEX - Benzene, Toluene, Ethylbenzene and Xylene) of petroleum products in water and sediment samples collected from sampling stations in the Lagos lagoon and in groundwater and soil around hydrocarbon impacted areas in Ijegun, Lagos, following a pipeline explosion in May 2008 was investigated over a two- year period (February, 2009 – July, 2010). The distribution of benthic communities in the different sampling stations of the Lagos lagoon was assessed. The toxicological evaluations of BTEX were carried out against juvenile stages of C. gariepinus and E. eugeniae. The effect of BTEX on antioxidant enzyme system, lipid peroxidation formation and different organs was investigated in C. gariepinus, Tilapia zillii, Chrysichthys nigrodigitatus and E. eugeniae. The determination of hydrocarbon levels in the samples showed that the levels of Total Hydrocarbon Content (THC) in the water samples around the Atlas cove and Apapa were high with values ranging from 2.03mg/l - 31.38 mg/l and 4.04mg/l - 22.89mg/l, respectively. The highest value of total BTEX in the lagoon sediment was also recorded in the Apapa station (450.53µg/kg) where oil depots and tank farm facilities are located. The study of the macrobenthic community structure showed that the species richness ranged from 1.57 to 2.02 in the reference station, Unilag while in the Atlas Cove, Iddo

and Apapa stations, it ranged from 1.80 to 2.89, 1.95 to 3.03 and 1.86 to 2.95 respectively. The highest number of organisms (183) was recorded in the reference stations while the least number (46) was recorded in Apapa. The main hydrocarbon pollution indicator species identified in the impacted aquatic stations were Nais eliguis and Heteromastus filiformis. Results showed elevated THC levels (2.00mg/l-689.12mg/l) in groundwater compared to the World Health Organization maximum permissible value of 0.1 mg/l. Higher values of THC in the soil ranging from 2.16 to 401.41mg/kg were also observed around the impacted area of Ijegun in comparison with 7.03 to 44.61mg/kg observed in the control station. The level of BTEX in the groundwater sampled within the 100m and 150m buffer zones ranged from 1.19 to 4964.33 μ g/l compared to the safe limit of 0.2 µg/l set for BTEX compounds in the Environmental Guidelines and Standards for Petroleum Industry in Nigeria (EGASPIN). Toxicological evaluations of the monocyclic aromatic components (BTEX) on *Clarias gariepinus* showed that ethylbenzene (0.479ml/l) was the most toxic compound tested followed by xylene (0.519ml/l), benzene (0.666ml/l) and toluene (1.190ml/l). Toxicity evaluations against Eudrilus eugeniae showed that xylene (1.212 mg/kg) was the most toxic compound followed by toluene (1.335mg/kg), ethylbenzene (1.366mg/kg) and benzene (1.896mg/kg). The biomarker study revealed an increase in malondialdehyde level and inhibition of the activities of Superoxide dismutase (SOD), Catalase (CAT), Glutathione (GSH) and Glutathione-S-Transferase (GST) in the liver and gills of Clarias gariepinus, Tilapia zillii and Chrysichthys nigrodigitatus, which can serve as good biomarkers for early detection of BTEX and related hydrocarbon pollution. Similar results of consistent increase in MDA levels and inhibition of SOD, CAT, GSH and GST activities in Eudrilus eugeniae exposed to sublethal concentrations of BTEX and petroleum hydrocarbon were observed, therefore confirming the relevance of these antioxidant enzymes as good general

biomarkers of hydrocarbon related stress. The histological study identified necrosis and deformation of the gills, inflammations in the liver, wrinkling of the oocyte membrane in the gonads of fish, and endothelial degeneration in earthworms as good histopathological biomarkers of hydrocarbon related stressors. The levels of hydrocarbon observed in the aquatic and terrestrial environment showed that there is widespread contamination as a result of petroleum product importation, storage and distribution. The combination of chemical analysis with these identified biomarkers will therefore provide important tools for early detection, diagnosis and management of hydrocarbon pollution.