Open Science Index, Mathematical and Computational Sciences Vol:5, No:2, 2011 publications.waset.org/15645/pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:5, No:2, 2011

An eighth order Backward Differentiation Formula
with Continuous Coefficients for Stiff Ordinary
Differential Equations
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Abstract—A block backward differentiation formula of uniform
order eight is proposed for solving first order stiff initial value
problems (IVPs). The conventional 8-step Backward Differentiation
Formula (BDF) and additional methods are obtained from the same
continuous scheme and assembled into a block matrix equation which
is applied to provide the solutions of IVPs on non-overlapping
intervals. The stability analysis of the method indicates that the
method is Lo-stable. Numerical results obtained using the proposed
new block form show that it is attractive for solutions of stiff problems
and compares favourably with existing ones.

Keywords—Stiff IVPs, System of ODEs,Backward differentiation
formulas, Block methods, Stability.

I. INTRODUCTION

UMERICAL solutions for ordinary differential equations

(ODEs) are very important in scientific computation,
as they are widely used to model real world problems.Stiff
systems are considered difficult because explicit numerical
methods designed for non-stiff problems are used with very
small step sizes.In the quest for better methods for solving
these systems, Curtiss and Hirschfelder [1] discovered the
backward differentiation formulae (BDF).

Since then, a great effort has been made in order to
obtain new numerical integration methods with strong stability
properties desirable for solving stiff systems. For a survey on
methods for stiff systems (see [2]). Since we are concerned
with the 8-step BDF which is an example of a linear multistep
method, we review briefly the k-step linear multistep methods
(LMMs) for the solution of the differential equations of the
form

y/ = f(tvy)v y(tO) =Y , T € [t07T7L] (1)

where f satisfies the Lipschitz condition as given in Henrici
[3]). The k-step LMM is conventionally written as

K k
> yni; =hY Bifats 2
i=0 i=0
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Which has 2k+1 unknown «’s and 3’s and therefore can be of
order 2k, where k is is the step number, however, according
to Dahlquist[4], the order of (2) cannot exceed k + 1 (k is
odd) or k + 2 (k is even) for the method to be stable. Several
authors such as Lambert [5], Gear[6], Gragg and Stetter[7],
Butcher[8], Akinfenwa et-al[9] proposed modified forms of
(2) known as hybrid methods which were shown to overcome
the Dahlquist barrier theorem. Several other methods have
been proposed for efficiently solving (1) (see Keiper and Gear
[10], Enright([11], [12]), Hairer and Wanner[2], Cash[13] and
Brugnano and Trigiante[14]).

In this paper, the conventional 8-step BDF and additional
methods are obtained from the same continuous scheme and
assembled into a block matrix equation which is applied to
provide the solutions for (1). We note that block methods
were first introduced by Milne[15] for use only as a means of
obtaining starting values for predictor-corrector algorithms and
has since then been developed by several researchers (see [16],
[17], [18]), for general use. The advantage of a block method is
that in each application, the solution is approximated at more
than one point. The number of points depends on the structure
of the block method. Therefore, applying these methods can
give faster solutions to the problem which can be managed to
produce a desired accuracy.

The paper is presented as follows: In section 2, we discuss
the basic idea behind the algorithm and obtain a continuous
representation Y (¢) for the exact solution y(¢) which is used
to generate members of the block method for solving (1). In
section 3, we present the stability analysis of our block implicit
algorithm. In section 4, we briefly discuss the implementation
of the method. In section 5, we show the accuracy of our
method. Finally, in section 6 we present some concluding
remarks.

II. DERIVATION OF THE METHOD
We proceed by assuming that the exact solution y(t) is

locally represented in the range [to, to + 8h] by the continuous
solution Y (¢) of the form

8
Y(t) =) big;(t) 3)
7=0

where b; are unknown coefficients to be determined and ¢t
are polynomial basis function of degree 8. We thus construct
the 8-point BDF method with ¢;t = /,j = 0,...,8 by
imposing the following conditions
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Y/ (tnig) = fays, 4

where y,; is the approximation for the exact solution
Y(tnts), fnes = f(tn+s,Unts) and n is the grid index.
It should be noted that equation (4) leads to a system of
equations which must be solved to obtain the coefficients
bj,7 =0,...,8 which are substituted into (3) and after some
algebraic computation, our continuous representation yields
the form

Y(tn+i):yn+j7 ]:0777

K}

Y(t) == aj(t)ynts + hBs(t) furs )

Jj=0

where «;(t)andfs(t) are continuous coefficients. The method
(5) is then used to generate the 8 — step standard BDF (6) at
point ¢t = t,,4s.

The additional methods are obtained by evaluating the first
derivative of (5) given by (7) at the points ¢t = t,4;,] =
1,...,7. Thus we have the additional methods as (8).

The integrators (8) together with (6) are combined
as a one block 8 point block BDF methods of order
(8,8,8,8,8,8,8,8)T with error constants:

2423 817 _ 277 2563 _ 1 347 80 )T
575316’ 383544 159810 11506327 191772 18264 ° 6849

_ (.89
Co = (608877

III. STABILITY ANALYSIS

In what follows, (6) and (8) can be rearranged and rewritten
as a matrix finite difference equation of the form

AVY, =AY, + hBWE, )

where

Yo = (yn+1, Yn+2, Yn+35 Yn+4, Yn+5, Yn+6, Yn+7, Yn+-8

Y, = (yn—7ayn—Gayn—57yn—47yn—37yn—27yn—1,yn)T

Fy = (fns1s frnv2s faass fatas fniss frives faat, fis
for w=0,... and n =0,8,..., N — 8, and the matrices
AW A0 B are 8 by 8 matrices whose entries are given
by the coefficients of (6) and (8). In particular, the matrices
are defined as equation (10).

)T

A. Zero-stability

It is worth noting that zero-stability is concerned with the
stability of the difference system in the limit as h tends to
zero. Thus, as h — 0, the method (9) tends to the difference
system

AVY, - AOY, =0

whose first characteristic polynomial p(R) is given by

280

p(R) = det(RA©®) + AW = ﬁRm —R) (11)

Following Fatunla[19], the block method (9) is zero-stable,
since from (11), p(R) = 0 satisfies |R;| < 1,5 =1,...,v,
and for those roots with |R;| = 1, the multiplicity does not
exceed 1.
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)T Yw+1 = D(Z)Yw , &= )\ha

Absolute Stability Region
Bz

Fig. 1. Stability Region

1) Consistency: The block method (9) is consistent as it
has order p > 1. According to Henrici[3],convergent, since
convergence = zerostability + consistency.

B. Linear stability

The linear stability properties of the eight point block BDF
methods are determined by expressing them in the form (9)
and applying them to the test equation

Y=y , A<0
which is applied to (9) to yield
(12)
where the matrix D(z) is given by
D(z) = —(AM — zBM)=14©

From (12) we obtain the stability function R(z) : C — C
which is a rational function with real coefficients given by
(13).

The stability domain of the method (or region of absolute
stability), S, is defined as

S=[z€C:R(z) <1] (14)

Specifically, when the left-half complex plane is contained
in S, the method is said to be A-stable. Below in Fig. 1, we
show the plot with rectangle representing the zeros and plus
sign representing the poles of (13). The plot in white represents
the stability region which corresponds to the stability function
(13). Clearly, from the figure, it is obvious that our method
is not A- stable since according to Hairer and Wanner [2] it
has at least a pole of the stability function (13) in the left half
complex plane.

However , the method is Lg-stable as in Cash [13] since it
satisfies the requirement that:

Maz,<o|R(z)| <1, z real and lim,_, ., R(z) =0
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Ynts = ey IntS T g T e Yt T gog3 ¥R T ey Ynts T gy Yntd T Tgggg YntS T gy Yo T gy YT
1 7
Y(0) = 5 (D ai(Oynes +hBLO foes) = f(tass yns) &)
=0
hfn+1 — %f’n+8 = _%y” - ?géggywrl + 145586461 Ynt2 — %y"+3 + 295153825y"+4 - 19418‘621 Yn+ts + %y'”ﬁ - %y"+7

5h _ 1159
hfnt2 + 3353 fnt8 = G3921Un

658 128731 4510 11065 4286 2003 3166
~ 2283Yn+1 ~ T36080Ynt+2 T 2253YUn+3 — G133 Yn+d T GeagUn+5 — gi3aYn+6 1 75905 Yn+7

h _ 301 111 2311 1325 3735 2171 677 537

hfn+s — 767 frn+s = —G3021Un + 1523 Ynt1 — T5o6Yn+2 — 3014Yn+3 T 5014Yn+4 — I566Yn+5 + 1566 Yn+6 — Fr508 Ynt7
h _ 199 425 2353 620 35 8852 691 2204

hfnta+ 761 fn+8 = s3270Yn — TiaisYn+1l + 1145 Yn+2 — 761Yn+3 + 553 Yn+4 + 1145 Ynt5 — 3505 Ynt6 T o905 Yn+7 ®)
5h _ 1229 349 2423 2395, 11765 67241 2143 1723

hfn+s — 5353./n+8 = —375620Un + S1a3Yn+1 — T3698 Ynt2 T Ts66 Ynt3 — ‘gz Yn+4 + 136986 Yn+5 T T566Yn+6 — 3ro6sYnt7

5h _ 433
hfn+e + 767 fr+s = Go2aYn —

246 2563 1690 4155 4846 15859 1242
3805 Un+1 T gi32Yn+2 — 2ag3Yn+3 T 3020 Un+4 — 3553Yn+5 T 15250 Ynt6 T 5507 Yn+7

hfn+7 - % n+8 — _%yn + %yn+l - %vaz + %yn-ﬁ? - 393193825 Yn+4 + %yn+5 - %y7l,+6 + %yn+7
24129 _ 15841 5215 _ 25585 14861 4627 521 0
T v O 3 (ORI - S O ) (S
A MM 388 M G0 WA IR
422 588 Wy 138 W8S, a0 PHM
AW = T I s AR B 80 759°
i I S« R - I -
R08: o0 B85 g AL M0 o080
B I A N R ' A
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000O0O0O0O0 -3
00 0O0O0GO0O 6132%3%
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AT=1 0000000 —34}3932020 (10)
000000 0 gu
0 0 00 00 0 —ggg
000O0O0O0T 0 -2
-1 0 0 0 0 0 O %})
0 -1 0 0 0 0 0 -z
0 0 -1 0 0 0 0 g
po_| 0 0 0 -1 0 0 0 -z
00 0 0 -1 0 0 =
o 0 0 0 0 -1 0 -2
&
0 0 0 0 0 0 -1 g
o o o o o o0 o 2

3(1680 + 5880z + 966027 4- 98002° + 67692 + 32832° 4 108925 + 21027)

R(z) =

5040 — 22680z + 4914022 — 6804023 + 673472* — 5046325 + 2953126 — 1369827 + 504028

13)

IV. IMPLEMENTATION Step 1. Choose N for k =8, h = b’T‘l the number of blocks

The implementation of the above block methods is summa-

rized as follows:

7 = & using (9) n = 0,w = 0 the values (y1,y2,...,ys)”

are generated simultaneously over the subinterval [tg, ts] as yo
are known from the IVP (1).

Step 2. for n = 8, w = 1, (y9, Y10,---,Y16)" are obtained
over the subinterval [ts,t16] since ys is known from the first

A. Summary block.
On the partition Iy : {a =tg <t; < ... <ty-1 <ty = Step 3. The process is continued for n = 2k, ..., N —k and
bn=0,1,2,...,N — 1. w = 2,...,7 to obtain approximate solutions to (1) on sub-
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intervals [to, tx],. .., [EN—k,tn] N is a positive integer and n
the grid index.

We explain briefly the implementation of the block methods.
For linear problem we use the Gaussian elimination to solve
the resulting k x k matrix in each block with our written
Matlab code. While for non- linear problem the code uses
the Newton iteration. The following notation is used to specify
the iteration yiﬁ denotes the (j + 1)th iterative value of yy,1;
and 6)%) = y/th — gl fori=1,2,...,kandi=12,...
Thus the Newton iteration of the 8 point block BDF method
for (15) takes the form

] i f(j)_
G+1) _ ) _ In+i (15)
n+t ~ In+i /(j)
fn+i
7) ) 3) 3) 3)
U(j+1) B y(j) _ alyn+1+a2yn+2+”'+a7yn+7‘+hfn+1+h’88fn+8 +D
In+1 n+1 1+n5f”+1 hB 5fn+8 !
) G LGy i, ©)
J J J J e (J
I C) S Clyn+1+C2yn+2;“'+C7yn+7+hfn+2+hvsfn+8 + Dy
n42 n+2 1anInt2 oy Ofngs
) o omiE oy St )
J J J J J
G+1) _ y(j) _ dlyn+1+d2yn+2+:“+C7yn+7+_hfn+3+h’/8fn+8 + Dy
n+3 n+3 vnInts . Snts
SYn42 8%ynts
G+1) o) ~"1yffL+97y5zji2+"'+97ysﬁ7+yfﬁs+’”’8f:LQs
Ynts ~YUnis = 5Fnts + Ds
14+hyg Sors
Put in matrix form then becomes:
JDsM = Oy M 4 a0 M) 4 p (16)
Where
Dq,D,,...,Dg are known from the initial value of

the problem. Thus we obtain the approximated values of

Yn+1>Yn+25 -+ Yn+8 as
i+1 j i+1
yr(zj+1 ) = yr(zJJ)rl + 5r(zj+l )
" , -
r(l]+2 ) = y’ELJ-I)—Q + 5’57,]-}—2 )
i+1 j G4+1
'EszrS )= y'Esz)rS + 57(17+8 )

V. NUMERICAL EXAMPLES
A. Example 1

Example 1: Our first example is the problem whose
Jacobian matrix J has purely imaginary eigenvalues on the
range 0 <t <T

yp = —ayz + (1 +n)cos(t), y1(0) =0
Yy = ays — (L+n)sin(t), y2(0) =1

With exact solution of the system given by

y1 = sin(t) , y2 = cos(t)

For any value of the parameter 7.Thus, the jacobian J has the
following expression
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TABLE 1
A COMPARISON OF METHODS FOR NUMBER OF CORRECT DIGITS A
,T" = 100, AND 7 = 10 FOR EXAMPLE 1

h M(8,78) | Our BBDFjy
4/5 3.43 3.97
2/5 5.67 6.38
1/5 8.23 8.28
1/10 9.29 10.72
1/20 11.24 12.45
1/40 12.57 14.23
TABLE II
A COMPARISON OF METHODS FOR EXAMPLE 2
method feval | nstep

BGH stiff 256 214

Gear type 317 248

VSCRK3g 99 8
Our BBDFy 100 13

the eigenvalues —in , .

We compare our method with that of [20] for the correct
digit A = —log;q (W) at the end of the interval
for various values of h as shown in Table L.

B. Example 2

Example 2: Next, we consider a well known classical sys-
tem see ([21], [22], [23]) in the range 0 <t < 10

Yyl = 998y1 + 1998ys, 31(0) =1
yh = —999y1 — 19992, 42(0) = 1

Its exact solution is given by the sum of two decaying
exponentials components.

Y1 = 46715 _ 367100015 Yo = _26725 + 3671000t

The stiffness ratio is 1:1000. In Table II, we present result
for that BGH stiff solver in Hall and Watt [24] and the
version of the Gear method in Stabrowski [22], along with
that of VSCRKg in Vigo-Aguiar and Ramos [23]. For our
method we use the step h = 0.1. The parameters considered
are the number of function evaluations, feval, and the total
number of integration steps, nstep. The exact solution, our
numerical solution and the absolute error at the end of the
last 10 time step (9.1, 10) are presented in Table IIL

Remark: Although the VSCRKg has fewer functions
evaluations the method was evaluated with an initial step
h = 10~* but our method uses relatively large step size at
h = 10~* which shows its’ efficiency and good accuracy.
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Ofnt1 Ofnts
I+ h5yn+1 +hfs 0Yn+8 55 a2 5f ar 0
n+2 n+48
c1 1+ hi&yn_,_z, + hVs Sunis cr 0
J1) = .
Sfnt7 . fnts
el 1+ hiéyn+7 + hug Sunis 0 o
n+8
91 92 gr 1+ hsg 0
(7+1) )
oY vt
J — — — J
6n+2 1 a2 ar 0 Yo
§G+D —a e —er 0 yy
n+3 . n+3
s = _ , a® =1 : oo Yo = :
_: —e1 .. —eg —1 0 :_
J+1 J
6£L+7 ) —91 —93 —g7r -1 y»EH)J
50+ @)
n+8 Yn+s
)
fn+1
1 0 0 0 -8 G) gl
01 0 0o -V o Do
B8O = Co : , F = e D= )
0 0 1 1 —nu : :
) D~
0 0 0 0 — fniq Dg
f(])
n+8
TABLE III TABLE IV
RESULT FOR BBDFg AT h = 0.1 FOR EXAMPLE 2 A COMPARISON OF METHODS FOR EXAMPLE 3
— -3 ;o . .
Exact BBDFg Absolute error €=1072Erri = [yi(t) — vil
t y1(t) x 1073 y1 x 1073 (lya(t) — y1l) method ¢ h N errl err2
ya(t) x 103 yz x 1073 (Jy2(t) — ya2]) WuandXia 1 0.002 500 2.5606 x 10:176 8.0150 x 10:12
o1 | 044666323396046 | 0.44666323491111 | 9.506 x 1013 ‘I" %(L‘:' “’2(:?0 Zizgz X 18713 222;‘; > 13713
-0.22333161698023 | -0.22333161745555 | 4.753 x 10~ 13 BBDFg 0 | oo | 1000 | 60468« 1020 | 2 3088 « 10-17
9 | 040415760734837 | 0.40415760820822 | 8.598 x 10!
) -0.20207880367419 | -0.20207880410411 | 4.299 x 10~ '3
93 | 036569692591269 | 0.36569692669097 | 7.782 x 10~
) -0.18284846295635 | -0.18284846334548 | 3.891 x 103
04 | 033089626222653 | 0.33089626293039 | 7.038 x 10~ TABLE V
’ -0.16544813111326 | -0.16544813146520 | 3.519 x 10~ '3 A COMPARISON OF METHODS FC{’;%@%‘.’F 3 USING € = 1076,
o5 | 029940731955080 [ 0.29940732018840 | 6.376 x 10-13 Erri = =
: -0.14970365977540 | -0.14970366009420 | 3.188 x 10~ '3
06 | 027091494596342 | 0.27091494653686 | 5.734 x 10~ method h errl err2
) -0.13545747298171 | -0.13545747326843 | 2.867 x 1013 PRM (3stagedtt order 0.1 7.283 x 1072 1.259 x 10~8
97 | 024513398021289 | 0.24513398077913 | 5.662 x 10 ' g 0.01 | 4.076 x 10~° 2.349 x 106
) -0.12256699010644 | -0.12256699038957 | 2.831 x 1013 BBDF 0.5 | 4.780 x 10~ 1T | 69.268 x 10~ 11
g | 022180639772871 | 022180639823954 | 5.108 x 10~ ¢ 8 0.05 | 4.034 x 10718 | 1.078 x 10—19
’ -0.11090319886435 | -0.11090319911977 | 2.554 x 10~ '3
99 | 020069872822470 | 0.20069872868725 | 4.625 x 10 '°
: -0.10034936411235 | -0.10034936434363 | 2.312 x 10~ '3
0.18159971904994 | 0.18159971946833 | 4.183 x 10~ 2 . - . .
100 | 0070085052407 | 0.00079985973416 | 2005 « 1013 of Li rong and and de-gui liu [27] and M (8,78) in Chartier
[20] taking values e 3, ¢~® and e~® respectively.
The table below shows the result of our method compapared
with that of [27].
C. Example 3 Lastly, for this example the result of our method compa-

Example 3: Consider the Stiffly nonlinear problem which

was proposed by Kaps [25] in the range 0 < ¢ < 10

Y= (e +2)y1 +e tyo, y1(0) =1
Yh =11 —y2—y3, y2(0) =1

The smaller € is, the more serious the stiffness of the system.

Its exact solution is given by

We compare our method with that of Wu and Xia [26], PRM

International Scholarly and Scientific Research & Innovation 5(2) 2011

Yi=ys, yp=¢€"

t

pared with that of [20]. It can be seen that for this example
our method show superiority over the all the three methods
for the different values of e compared especially when the
step size h is relatively high.

For our last example we present without comparison the
result for different choices of the constant stepsize h, the
absolute error for h at the end of the interval T' = 10.

D. Example 4

Example 4: Consider the weakly damped oscillatory prob-
lem in the range 0 < ¢ < 10
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TABLE VI
A COMPARISON OF METHODS FOR THE NUMBER OF CORRECT DIGITS AFOR
EXAMPLE 3 USING € = 10~8

method M(8,78) | BBDFg
h=1/4 4.66 5.80
h=1/8 5.67 7.93
h=1/16 6.26 10.21
h=1/32 847 1252
h=1/64 10.83 12.87
h=1/128 15.63 12.58
TABLE VII
RESULT FOR OUR METHOD BBDFg FOR EXAMPLE 4 erri = |y;(t) — vi|
h errl err2 err3
0.1 6.565 x 10~ 2.302 x 10~° 2.302 x 10~°
0.05 | 5.849 x 1079 6.767 x 10~9 6.767 x 10~9
0.01 | 2.237x 10~ ™ [ 1.747 x 10~ 13 | 1.747 x 10~ 13
/
y' = Ay, y(0) = yo
Where
0.01 -1 1
A= 2 —100.005 99.995
2 99.995 —100.005

The exact solution is
y1(t) = e~ 90 (cos(2t) — sin(2t))
Yo (t) = e~ 90t (cos(2t) + sin(2t)) + e 200
y3(t) = e~ 001 (cos(2t) + sin(2t)) — =200

VI. CONCLUSION

A 8-step BDF with continuous coefficients has been pro-
posed and implemented as a self-starting method for solution
of stiff systems of ODEs. The method avoids complicated
subroutines needed for existing methods requiring starting val-
ues or predictors. The good stability and consistency property
of our method makes it attractive for numerical solution of
stiff problems. We have demonstrated the accuracy of the
methods for both linear and non linear problems. Our future
research will be focused on the implementation of the method
to parabolic partial differential equations, since it is Lg -
stability.
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