
 34                         Journal of Engineering Research, Volume 22 No 2 December 2017           

 

Orthogonal and Spectral Decomposition Algorithms for the 
Optimal Estimation of Parameters from Indirect 

Measurements 
 

O. E. Abiodun, J. O. Olusina, J. B. Olaleye 
Department of Surveying and Geoinformatics, University of Lagos, Akoka, Yaba, Lagos. 

Email: abiodunoludayo@yahoo.com, joolusina1@yahoo.com, jb_ola@yahoo.com 

 
 
Abstract 
The optimal estimation of the parameters of a physical system from a set of measurements is a task 
commonly performed in numerical analysis of data in engineering and all applied quantitative fields. In a 
statistical sense, experimental measurements are usually considered as a mixture of both useful signals 
and unwanted noise and so, often, the aim of measurement data processing is to separate these 
components of a measurement in an optimal way. In solving these problems, researchers often adopt the 
method of direct formation and inversion of normal equations for the solution of a least squares problem. 
This paper however presents the method of orthogonal decomposition as an easier, simpler and equally 
valid alternative approach to direct formation and inversion of normal equations. The basic principles of 
L2-norm (a vector norm defined for a complex vector) optimization and its geometric structure are 
discussed and implemented through the techniques of orthogonal and spectral decompositions. A simple 
regression problem was used to demonstrate these algorithms from which conclusions are made that: the 
combined use of these decomposition algorithms produces both the parameter values and their variances 
simultaneously, making it possible to solve an optimization problem without an express formation of 
normal equations. 
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1.0   INTRODUCTION 

THE scientific study of a real world phenomenon often starts from conceptualizing it as 

an entity having physical properties or attributes which may be classified as constants 
(properties whose values are known from common knowledge or previous experiments), 
observables (properties which can be directly observed in a measurement process) and 
parameters (properties which can only be derived indirectly as the outcome of the 
experiment (Bjiorck et al., 2000; Fu and Barlow, 2004; Markovsky and Huffel, 2005a; 
Chang and Paige 2003). Quite often in experimental work, the determination of the 
parameters is the main goal of the study, and the general technique is to associate 
properties to variables in a mathematical relation characterizing the phenomenon under 
study, measure the observable ones in sufficient quantities and compute the values for 
the unknown parameters using the model structure. 
 
However, in measurement theory, it is common knowledge that the true value of a 
measured quantity is never obtainable due to imperfections of the measuring process 
and random effects. Therefore, measurements to be used as input into a system that 
estimates the parameters are considered as a mixture of both useful signals and 
unwanted noise and so the aim of the indirect measurement data processing is often to 
separate these components of a measurement in an optimal way, and this leads to the 
use of the term optimal estimation which suggests that only the most probable values of 
the parameters can be obtained. The optimal estimation concept is based on 
minimization of the noise component and, in the process, maximize the signal so that 
the most acceptable or probable values of the unknown parameters are obtained 
(Markovsky and Huffel, 2005a; Mikhail and Gracie, 1981; Wolf and Ghilani, 1997) 
 



JER 22(2) 34-49                        O. E. Abiodun, J. O. Olusina, J. B. Olaleye                                           35 

 

 

In this paper, the method of orthogonal decomposition is used to minimize the L2 norm 
of the noise by breaking the observed data vector into two perpendicular components: 
the noiseless signal and the pure noise. The orthogonalization process generates a 
transfer matrix which symbolically filters out the noise from the data vector (Chang and 
Paige, 2003). The method of spectral decomposition symbolically decorrelates or 
mutually orthogonalizes the columns of the transition matrix and then finds the 
projection of the measured data vector along each column. These projections are the 
optimal values of the unknown parameters while the inverses of the square length of the 
orthogonal columns are the eigenvalues whose inverses provide the estimates of the 
variances. The combined use of these decomposition algorithms implicitly produces 
both the parameter values and their variances (Wolf and Ghilani, 1997; Markovsky and 
Huffel, 2005a). 
 
The experimental model is assumed to have a non-zero derivatives at the point of 
observation. By ensuring that the noise is perpendicular to the tangent plane, the signal 
was recovered optimally. And for the spectral decomposition, the classical Grain-Schmit 
algorithm was used. The orthogonal and spectral decomposition algorithms were 
validated using a LS method of simple set of equally weighted measured line. Results 
show high level of compatibility. 
 
2.0   METHODOLOGY 
 
2.1 The Key Points of an Inner Product Space 
The physical environment in which survey measurements are made is usually 
conceptualized to be a Cartesian coordinate system which may be characterized as a 
Euclidean vector space (Luenberger, 1969; Maddox, 1988). This permits us to use the 
axioms of that space to represent the sets of observed quantities, the parameters and 
the functional models as vectors and matrix elements and to derive computational 
algorithms for data processing. The important characteristics of the inner product space 
are summarized in what follows. The full discussion on the subject can be found in 
Luenberger (1969); Maddox (1988); Marcoux (2013):   
 
The inner product space is often represented as ),,,( X  where  , means inner 

product. For elements A, B, C in X, the following operations are allowed; 
 
1)   The Dot or Scalar product of two vectors A and B, denoted by BA  (read A dot B), 

is defined as the product of the magnitudes of A and B and the cosine of the angle 
θ between them. In symbols, 

       (1) 
2)   If   and  and  are not null vectors, then  and  are perpendicular. 

If the dot product of two vectors is zero when none of the vectors is null, then they 
are orthogonal or perpendicular.  

3)  The following laws are also valid: 

     Commutative Law for Dot Products 

    Distributive Law 

               (2) 

where  is a scalar 
Other types of operations which may be performed on vector elements of an inner 
product space include: 
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4) Distance between two position vectors: 

                                                          (3) 

5)  Length (magnitude) of a position vector 

                                                                      (4) 

6)  The projection of position vector A on position vector B (i.e. length of A along B) 

Pr
T

A T

A B
oj B

B B
                                                   (5)        

7) Minimum length of a vector A 
 

 min                                                                     (6) 
 
However, in order to take account of the stochastic nature of the variables of a vector 
space involved in optimal estimation, recourse is often made to the concept of 
symmetric operator (W) in an inner product space (Maddox, 1988). The use of a 
symmetric operator makes the inner product space to become also a probability space 
(Olaleye et al., 2012; Zarowski, 2004). By this, the inner product definition is adjusted to 
include the covariances of the observed (or estimated) elements of the space. The inner 
product becomes a weighted inner product. The following are the list of axioms using 
the weight matrix (W): 
 

(8)                                                                                    (7) 
 
This form of the inner product is used in weighted optimization process (Lista et al., 
2004). 
 
Nonetheless, a more practical and useful approach of including probability measure in 
the inner product definition associates a weight factor to every element of the space 
before computing the inner product. This is done by finding the square root of the weight 
matrix W and using this to transform every vector element into the equivalent weighted 
metric space, reflecting the confidence in the data. This transformation naturally 
incorporates the reliability measure into the inner product. For example, if we define a 

weight metric W and presume that there is a factorization of the weight SSW
T , then, 

we can weight each vector as: 

(9)                                                                                         (8) 
 
where S is a symmetric matrix root of W, thus the inner product in the weighted space 
can be given as: 
 

(10)                  (9) 
 
With this transformation into a probability vector space, a weighted operation can be 
performed using the above formulas and axioms. Nonetheless, a direct use of the 
weight matrix can be used as an alternative; and the formulas are given as below:  
(11) Distance between two position vectors: 
 

                                                       (10) 
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(12) Length of a position vector: 
  

                                                                   (11) 
 
(13) The projection of position vector A on position vector B (i.e. length of A along B) 

Pr
T

A T

A WB
oj B

B WB
                                                 (12)                                                                                   

 

(14) Minimum length of a vector 
 

mini                                                                    (13) 
 
which all involve the weight matrix in the inner product. Thus all kinds of statistically 
meaningful questions about the goodness of observations, blunders, goodness of 
estimated parameters, etc., can be asked and answered in the space of our least 
squares problem (Lista et al., 2004; Vanicek and Krakiwsky, 1986). 
 
2.2    Functional Representation of Indirect Measurements in a Vector Space 
In experimental work, the functional model linking a vector of measured quantities to a 
vector of parameters is often postulated based on some theoretical or empirical 
concepts, analytical geometry and topology. The model can be linear or nonlinear and 
can include many variables as desired. It is expressed in a mathematical form as 
follows:  
 
Let an observable vector  be linked to a parameter vector   by a specified function , 
then we can write the equation as: 
 

                               (14) 

 
where f indicates the system function or process, y is the vector of observed data,  is 
the vector of desired parameters. 
 
Eq. 14 is usually referred to as an observation equation. The optimal estimation process 
determines the solution β only when the problem formulation is overdetermined, that is, 
when more than enough observations have been obtained so that there is a redundancy 
in the formulation. The use of an overdetermined system with the mathematical model 
explicit in y and dimension of y = m > dim β = n brings into existence the residual vector 
r whose values are yet unknown. Therefore, if sufficient and independent 
measurements are made such that the presence of noise can be detected, the 
functional model can be represented as: 
 

                                             (15) 

 
r is the vector of noise in the measurements 
 
In the general application of Eq. 15, the function f, may be nonlinear in the unknown 
parameters . In such cases, the function f is usually replaced with an m x n matrix X, 
variously called the tangent matrix, design matrix, system matrix, kernel etc. whose n 
columns are the m-dimensional vectors each of which contains the derivatives of the 
function f with respect to one of the unknown parameters in . For a multi-parameter 
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problem, Eq. 15 in a linearized form will have the following vector representations 
(Olaleye et al., 2012). 

                       (16) 

where 

 
 

 
 

, i = 1, 2, …, n 

 
n is the number of parameters. X is a matrix of n column vectors  and is written as: 
 

                             (17) 
 
The matrix in Eq. 16 will be referred to as the tangent plane or tangent matrix (see 
Figure 1).  
 

 
Figure 1: The LS manifold variables projection theorem 

 
In order to simplify matters in this paper, we choose a simple function f which is a linear 
transformation represented by a matrix X whose columns serve as a basis for the 
transformation. For example, for a regression application, the f becomes a matrix X 
whose columns are the known regressors, causal values or specified base functions 
representing the derivatives (or tangents) of the regression function. Then our functional 
model Eq. 15 can be written as: 

                                                       (18) 
 
Equation (15) can also be written as: 

   
 
where  is the estimated observation or the noiseless signal. From Eq. 18, we can 
express the noise component as: 
 

                                                      (19) 
 
2.3    Orthogonal Decomposition of Indirect Measurement 
In mathematics, given a vector at a point on a curve, that vector can be decomposed 
uniquely as a sum of two vectors: one tangent to the curve, called the tangential 

f(β)  expected data manifold (ŷ) 

(r)  residual manifold (y) Data manifold  
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component of the vector, and another one perpendicular to the curve, called the normal 
component of the vector. Similarly, a vector at a point on a surface can be broken down 
the same way. More generally, given a set of functions representing a group of curves 
and a vector at the point of tangency to the curves, the vector can be decomposed into 
the component tangent to the curves and a component normal to the tangent plane 
provided the derivatives exist at the position of tangency. This concept of orthogonal 
decomposition is applied in optimal estimation to separate a measured data vector into 
noiseless signal and noise components. The measured data vector represents the given 
vector at the point of tangency and the collection of derivatives of the experimental 
models with respect to some parameters provides the tangent plane. The experimental 
model or collection of models is assumed to have non-zero derivatives at the point of 
observation. The concept is that the measured data vector is a mixture of signal and 
noise. The signal component is along the tangent plane while the noise is along the 
normal to the tangent plane. Hence, by ensuring that the noise is perpendicular to the 
tangent plane, its L2-norm length is minimum and the signal can be recovered optimally. 
In practice, the tangent plane is represented by the matrix of model derivatives. The 
process can be treated mathematically as follows: If the directions of the tangent plane 
is known, then using the functional model in Eq. 18 and the orthogonality condition 
(Axioms 1 & 2) in section 2, the decomposition process is as follows (see Figure 2) (Fu 
and Barlow, 2004; Markovsky and Huffel, 2005b; Olaleye et al., 2012).  

 

 
Figure 2:   A Geometric representation of the LS problem space generated by the axial manifolds 

 
Given the functional model linking measurement vector quantities containing error 
components to a set of parameters as in Eq. 18, and the noise component given by Eq. 
19, the orthogonal projection theorem provides that the optimal solution (minimum L2-
norm of the noise component) can be obtained by projecting the error component so 
that it is orthogonal to the plane containing the optimal signal (the tangent plane) of the 
operating function. In other words, the L2-norm of the residual error |||| r  is minimized 

when  i.e the inner product of r and each of the spanning base vectors Pi of the 
tangent plane X is zero. This is clearly expressible as inner product operation or the 
orthogonality conditions as: 

                (20) 
 
Performing the indicated inner product and using the distributive Axiom 2 and 3 above 
to Eq. 20, results in what is called the normal equations: 
 

                           (21) 
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From where we get the expression for β as: 

                             (22) 

                            (23) 
 

If the data vector y is assumed to have uniform and independent variability matrix 

                                (24) 

 
The parameter vector  will also have a variability matrix given by Gauss Error Law as: 

 

 

 
                            (25) 

 
And then the signal projection expression becomes 

                        (26) 
If we let 

                           (27) 
 
Then we can compute the estimates of the optimal signal and its variances from: 

                                 (28) 
 
The estimates of the signal variances can be computed from: 

 

 
                                (29) 

 
The symbol  therefore may be called the transfer operator or the signal filter or the 
signal projector which serves to project the observation vector on the tangent plane. It is 
a symmetric idempotent operator since the multiplications by itself leaves the matrix 
unchanged (Mikhail and Gracie, 1981; Kreyszig, 1978). This can be seen from the 
following: 

 

 

 

 
 

By substituting Eq. 28 into Eq. 19, we obtain the equation for the noise component as: 

                        (30) 
 
It is seen that the projector for the noise component of the data vector is given by: 
 

                                 (31) 
 
This is the operator which puts the error component in a direction normal to the tangent 
plane. It is also a symmetric idempotent operator. 
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Some times in experimental data analysis, it is necessary to compute estimates of the 
variances of the noise component perhaps for blunder detection, the formulas for this 
are derived as below: Using the error propagation calculus on Eq. 30, the estimates of 
the noise variances may be computed as follows: 

 

 

 

 

                              (32) 
 
It is important to note that if all sources of biases are removed from the input data, this 
orthogonal noise component becomes random and can be referred to as pure white 
noise as opposed to a coloured noise which may still contain traces of the signal 
(Mikhail and Gracie, 1981; Kreyszig, 1978; Kavanagh, 2014). 
 
Nonetheless, the principle of the projection theorem states that these two projectors in 
Eq. 27 and Eq. 31 must be perpendicular, i.e. their inner product must be zero. We 
show that these two projectors meet this condition by computing their inner product as 
follows: 
 

 

                        (33) 
 
This confirms that the orthogonality condition is satisfied. Hence, the optimal or 
orthogonal projectors or filters can be constructed directly from the tangent plane matrix 
X as: 

                      (34) 
 
Furthermore, the integrity of these variance formulas may be checked by computing the 
variances of the raw data vector from the model expression as follows: 

 

 

 

 

 

 

 
 
which is the same as the variances we started with. 
 
It is also the practice to replace the measurement variance often called the a priori 
variance factor with an estimated variance often called the a posteriori variance in the 
final analysis of the estimated quantities. The a-posteriori variance factor is computed 
as: 

                               (35) 
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where m is the number of rows and n is the number of columns. 
 
This is used in all the computational models listed below.  
It is appropriate to remark here that for a weighted optimization, every vector element in 
the vector space will be transformed to a weighted equivalent using the square root of 
the weight matrix. All the above formulations are therefore applicable to weighted 
optimization. The weighted approach is not covered in this paper. 
 
Putting it together, the end result of orthogonal decomposition of measurement vector is 
to obtain values for the parameter vector and its variances in the first place and then 
other results purely for completeness and extended statistical analysis of the 
experimental results. Thus, the following is a listing of the orthogonal formulas for the 
complete outputs of an optimal estimation process: 
   Parameter estimates and variances: 

 
                              (36a) 

   Idempotent orthogonal transfer operator  

                             (36b) 
   Signal estimates and variances:       

 
                                  (36c) 

   Noise estimates and variances: 

 

 

                                  (36d) 

 
Another objective of this paper is to explore the effect of orthogonalizing the columns of 
the tangent matrix  on all the optimal estimation output formulas listed above. In other 
words, to see the geometric implications and the simplification that can be expected 
from spectral decomposition of the tangent matrix. This is the subject of the next 
section. 
 
2.4  Spectral Decomposition of the Tangent Matrix 
Spectral decomposition is the process of decorrelating the column vectors of the 
tangent matrix so that they are orthogonal to themselves. In effect, this process reduces 
the coefficient matrices in the optimal output formulas to simpler forms by sweeping out 
the inner product of any two of the column vectors whenever such is indicated in the 
solution process. The orthogonalization of the n-column vectors of the tangent plane 

 to themselves is, in effect, to make their inner products zero, i.e 

. This process is a De-Corellation of the column vectors of 

the tangent matrix. To achieve this, the classical Gram-Schmidt algorithm is used 
(Keerthi and Shevade, 2003; Zarowski, 2004; Chang and Paige, 2003). The steps are 
as discussed below: 
 
Given a set of n column vectors , find an equivalent set  which 

are orthogonal. We take  and equate it to . We now remove from  the component 

of  lying in the direction of  and the remainder will be orthogonal to . This 

remainder vector then gives us . Also, by subtracting the components of  in the 
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directions of  and , we obtain . This process can be repeated for all columns 
using the general formula in Eq. 37 (Zarowski, 2004 and Chang and Paige, 2003): 
 

                          (37) 

 
For instance, when i = 1 Eq. 18 gives:  
 

For i = 2, we have:                         

 
For i = 3, we have:                         

 

Thus, the column vectors  are orthogonal and may be used in place of the 

original axes . When the orthogonal vectors  are substituted in 
each of Eq. 36a-d and simplifying, we have: 
 

                   (38a)    

And the variance matrix as: 
 

                 (38b) 

The idempotent transfer operator becomes: 

                          (38c) 

   Signal estimates and variances:       

 

                      (38d) 

   Noise estimates and variances: 

 

 

                                    (38e) 
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It is noted that the orthogonalization of the column vectors has greatly simplified the 
computational equations. In fact, by carrying out the inversion of the now diagonal 
coefficient matrix of Eq. 36a, we obtain Eq. 39, from which the simple formulas in Eq. 30 
emerge: 
Carrying out the indicated multiplications we have: 

  

                      (39) 

 

                          (40) 

 

                          (41) 

 
Eq. 39 shows that the solution to the unknown parameters of an optimization problem 
can be computed directly without an explicit formation of the familiar normal equations.  
However, while they give the correct values for all parameters, the correct estimate of 
the first parameter in the manifold is achieved as a linear combination of the other 
parameters as shown in Eq. 40. Most significantly, the spectral decomposition of the 
tangent operator has actually simplified all the computational formulas and in fact led to 
a simultaneous extraction of both the parameter estimates and the variances. 
Furthermore, the idempotent filter matrix has been made geometrically transparent as 
the sum of the ratios of outer product and inner product of the orthogonal columns of the 
tangent matrix as in Eq. 41. These are demonstrated in the example applications below.  
 
2.5  Summary of the Computational Steps 
a) State the primary vectors 

 
 
Specify the dimension m and n of the problem m must be greater n. 
n is the number of parameters. X is a matrix of column vectors  obtained as 
derivatives of the function vector f with respect to each parameter up to n parameters 
and is written as: 

                                                                                 (42) 
 

b) Generate the columns of the tangent operator  
   If nonlinear model then linearize 
   For i = 1 to n compute the n columns of X 
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                                            (43) 

 
c) Generate the weight matrix operator S 
If weighted optimization, then transform data and the axial manifolds using the square 
root of the weight super manifold as: 

                                                               (44) 

                                                                  (45) 
 

d) Initialize the computations 
Compute certain quantities for later use 

                                                             (46) 
 

e) Generate Orthogonal columns of the tangent matrix 
For i=1 to n generate the orthogonal columns 

                                                                              (47) 
f) Compute parameters and variances 

g)                                                                                          (48) 

                                                                    (49) 
 

                                                 (50) 
 

h)   Compute a posteriori variance factor, noise vector and optimal signal vector 
Idempotent orthogonal transfer operator  

                                                                             (51) 
 
Signal estimates and variances: 

 

 
 
Noise estimates and variances: 
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i)   Validate result. 
 
3.0  RESULTS AND DISCUSSION 
 
3.1 Application problem 
To demonstrate the effectiveness of the orthogonal and spectral decomposition 
approach of LS optimization, a simple set of equally weighted line measurements listed 
in Wolf and Ghilani (1997) are adjusted to obtain the optimal estimates. The three 
distances were taken between points A, B, and C on a line. The problem is to determine 
the most probable values of the distances AB and BC. The measured values are: AC = 
431.71 ft, AB=211.52 ft and BC=220.10 ft 
  
3.2 The solution 
This problem can be formulated as an indirect observation of the required line lengths 
as the parameters. 
 
3.3 The Algorithm 
 
a) State the primary manifolds 

 
 
Specify the dimension m and n of the problem 

 
 
Generate the Weight Transformation Operator S 
Equally weighted, so identity transformation 
 
b) Initialize the computations 

 = =  
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When   we have V2 and it is determined as follows:  
 

 

 

 
 
c)   Compute parameters 

 

 

 

 

 

;   

 
d) Validation: These results agree with the values computed by Wolf and Ghilani, 
(1997) through regular least squares method as shown in Table 1.  
 
Table 1:  Comparison of Results of Regular Matrix and Orthogonal 

Decomposition Approaches  
S/N Parameter Regular Matrix Approach Orthogonal Decomposition Approach 

1 a 211.55 211.55 
2 b 220.13 220.13 

 
3.4   Discussion of Results  
A comparison of the results from the spectral decomposition with those of a full matrix 
method of least squares computation shows that the orthogonal-spectral decomposition 
methods yields the same results. An examination of the computational steps in the 
above example shows a series of inner product calculations and arithmetic operations of 
addition, multiplication and division of inner products.  Considering the mechanics of the 
method, it is seen that the processes of generating the design (or tangent) matrices, 
idempotent matrices orthogonal decomposition and the spectral decomposition and the 
spectral decomposition of the tangent matrix have effectively reduced the usually 
computational intensive least squares problem into simple systematic sequence of 
scalar value computations as can be seen from Eqs. 38 and 40. In addition, the method 
also provides an insight into the geometrical structure of a least squares process 
especially by reducing the problem into a filtering process as seen in Eqs. 28 and 30 
respectively. The transfer matrix is also simplified by the spectral decomposition as 
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seen in Eq. 41. The check on the numerical values of the parameters as computed in 
section 3.3 above confirms that the orthogonal-spectral decomposition process is 
effective. The form of the formulas makes it easy to understand the geometric basis of 
the LS problem. The orthogonalization followed by the spectral decomposition of the 
kernel matrix expounds the inner geometry of the optimal estimation process.  
 
4.0   CONCLUSION 
The findings in this paper can be summarized as follows. 
i)   The method of direct orthogonal and spectral decompositions of the measurement 

functions tangent matrix is a potent alternative to the ubiquitous method of direct 
formation and inversion of normal equations for the solution of a least squares 
problem. The computation formulas are simple, the steps are routine and the only 
mental exercise required is to remember that the inner product of two vector-
valued functions is the sum of the products of their corresponding elements. 

ii)   The sequence of the solution steps holds the promise of huge savings in the 
calculation efforts when additional parameters and thus more columns are to be 
included in the solution such as when trying out different models on the same 
dataset. 

iii)   Since only one parameter is treated at a time, huge savings in memory is possible 
as not all the data needs to be loaded into core memory at the same time. This 
could form a basis for further investigation in the near future. We however 
recognize that savings in memory poses no serious challenge in modern times of 
small but powerful computer systems. 

iv)   The method provides an insight into the fundamental geometry of the least squares 
problem by preserving the group structure of the variables in the solution process. 
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