IMPACT OF CLIMATE VARIATION ON SELECTED DISEASES IN NIGERIA

BY

MUYIOLU, SALIMON KOLAWOLE Mat No. 979005035

DEPARTMENT OF GEOGRAPHY UNIVERSITY OF LAGOS LAGOS, NIGERIA

NOVEMBER, 2015

SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS

CERTIFICATION This is to certify that the Thesis:

IMPACT OF CLIMATIC VARIATIONS ON SELECTED DISEASES IN NIGERIA

Submitted to the School of Postgraduate Studies University of Lagos

For the award of the degree of DOCTOR OF PHILOSOPHY (Ph.D.) is a record of original research carried out By:

MUYIOLU, SALIMON KOLAWOLE In the Department of Geography

MUYIGLU SIK.

1ST SUPERVISOR'S NAME

2ND SUPERVISOR'S NAME

Msegun

enseton

Idends Omopla

Adeage (ph. 0)

SIGNATURE

17-11-2015 DATE

SIGNATURE

17/11/15 DATE

17 11

ey un uni SIGNATURE

DATE

11/2015 DATE

manue NTERNAL EXAMINER

1ST INTERNAL EXAMINER

RNAL EXAMINER

wghn

SPGS REPRESENTATIVE

SIGNATURE

Cordeage

SIGNATURE

SIGNATURE

SIGNATURE

17/11/2015

DATE

Dedication

This work is dedicated to the Glory of GOD, *the Father, the Son and the Holy Ghost and* to my Children: Morenikeji Kolawole; Olwatobiloba Kolawole; Oluwaseun Kolawole; Tolulope Kolawole whom I have denied one right or the other because of this work.

Acknowledgement

To God be the Glory for the successful completion of this programme.

I sincerely thank the Almighty God for courage and strength as a result of the challenges encountered and my eventual success. I shall always remain grateful to my first Supervisor, Prof. S. O. Ojo who encouraged and guided me through this work. He read tirelessly my papers and inconvenienced himself to see to the success of this work, but he departed this sinful world to glory on Monday 9th September, 2013. I believed his spirit is still very much with me. May his soul rest in perfect peace. I am also indebted to my retired second supervisor, Professor Emeritus, L. Oyebande for his advice during the course of this work. My special thanks goes to my recent first supervisor, Prof. A. Omojola who gladly accepted to shoulder the burden of my success. I cannot thank you enough, may the almighty continue to be with you. I am also grateful to my second supervisor, Dr. F. Oni who also worked tirelessly to see to the completion of this study. I appreciate the contribution of Associate Professor A. S. O. Soneye, the Head of Department for his objective criticism and advice. I cannot forget the immediate past Head of Department Prof. S. I. Oni for his encouragement and motivations during the course of this study. The contributions of Dr. A. O. Adeaga; Dr. M. J. Fasona; Dr. Vide ; Dr. S. Odunuga; Dr. A. O. Ayeni; Dr. Uluocha; Dr. S. I. Balogun; Dr. Ekop; Dr. Ege; Dr. Ellias; Dr. B. Adegun; Dr. Akintuyi ; Mr. Ogunkunle and Mr. Oluwaseyi, is highly appreciated.

Many thanks also go to my colleagues and staff of Nigerian Meterological Agency: Dr. E.A. Afiesimama; Mr. C. U. Okoloye; Mr. N. Nnoli; Mr. I. D. Nnodu, Mr. D. T. Ngana; Mr. F. Adefuye; Dr. A. O. Lawal; Mr. A. O. Aremu; Mr. O. Akinyemi; Mrs. H. Oluwatosin and host of others that I cannot mention.

I am also grateful to my wife, Mrs J. B. Muyiolu for her steadfast prayers and support especially when faced with challenges of life and discouraged. Finally, I cannot thank enough my Mentor, Prof. E. O. Oladipo whom the Lord used to fulfil His promises to me. I say may you live long and continue to reap the fruit of your labour in good health (Amen).

TABLE OF CONTENTS

page

Title Page	i
Certification	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	vi
List of Tables	xii
List of Figures	xiii
List of Appendices	xi
Abstract	xviii

CHAPTER ONE

1.0	INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of Research Problem	3
1.3	Research Questions	6
1.4	Objective of Study	6
1.5	Significant of the Study	7
1.6	Scope and Delimitation of the Study	8
1.7	Research Hypotheses	9
1.8	Operational Definition of Terms	9
1.9	Study Area	10
1.9.1	Location and Size	10

1.9.2	Physical Features	11
1.9.2.1	Geology	11
1.9.3	Vegetation and Soils	12
1.9.3.1	Vegetation	12
1.9.3.2	Soils	13
1.9.4	Relief and Drainage	14
1.9.4.1	Relief	14
1.9.4.2	Drainage	15
1.9.5	Climate	16
1.9.6	Population and Economic Characteristics	18

CHAPTER TWO

2.0	CONCEPTUAL TRAMEWORK AND LITERATURE REVIEW	20
2.1	Theoretical Framework	20
2.1.2	Disease Interaction and the Environment	24
2.2	Literature Review	30
2.2.1	Nature of Climate Variations	30
2.2.2	Spatial and Temporal Distribution of Disease	33
2.2.3	The Relationships between Climate Variation and Disease	34
2.3	Some Characteristics of Diseases used in this Study	38
2.3.1	Malaria	38
2.3.2	Measles	41
2.3.3	Meningitis	42
2.3.4	Pneumonia	43

CHAPTER THREE

3.0	METHODOLOGY	47
3.1	The Data, Sources and Characteristics	47
3.2	Data Analysis	49
3.2.1	Nature of Climate Variation	50
3.2.1.1	Mean Average Values	50
3.2.2	Spatio-Temporal Distribution of Selected Diseases	50
3.2.2.1	Time Series Analysis	51
3.2.2.2	Standardized anomaly	51
3.2.3	Climate Variation and Diseases	52
3.2.3.1	Pearson Correlation Analysis (PCA)	53
3.2.3.2	Canonical Correlation Analysis (CCA)	53
3.3	Hypotheses Testing	54

CHAPTER FOUR

4.0	RESULTS	57
4.1	Nature of Climatic Variation in Nigeria	57
4.1.1	Rainfall	57
4.1.1.1	Mean Annual Rainfall Distribution	57
4.1.1.2	Mean Monthly Rainfall in Nigeria	58
4.1.1.3	Trends and Temporal Distribution of Rainfall	58
4.1.2	Variability and Trends Over Ecological Zones	61

4.1.2.1 Sahel Zone	62
4.1.2.2 Sudan Savanna Zone	63
4.1.2.3 Guinea Savanna Zone	65
4.1.2.4 Rain Forest Zone	67
4.1.2.5 Mangrove Zone	69
4.1.3 Nature of Temperature	71
4.1.3.1 Temperature Trends	73
4.1.4 Distribution of Temperature in Ecological Zones	74
4.1.4.1 Sahel Zone	74
4.1.4.2 Sudan Savanna Zone	75
4.1.4.3 Guinea Savanna Zone	77
4.1.4.4 Rain Forest Zone	78
4.1.4.5 Mangrove Zone	80
4.1.5 Distribution of other Significant Climatic	81
4.1.5.1 Relative Humidity	81
4.1.5.2 Solar Radiation	81
4.1.5.3 Surface Wind	81
4.2 Sptio-Temporal Distribution of Selected Diseases	84
4.2.1 Malaria	84
4.2.1.1 Mean Annual Distribution of Malaria in Nigeria	84
4.2.1.2 Mean Decadal Distribution of Malaria	86
4.2.1.3 Climatic Conditions Suitable for Malaria Transmission	89
4.2.1.3.1 Sahel Savannah Zone	89
4.2.1.3.2 Sudan Savannah Zone	91
4.2.1.3.3 Guinea Savannah Zone	92

4.2.1.3	3.4 Tropical Forest Zone	94
4.2.1.3	3.5 Mangrove Swamp	96
4.2.1.4	Malaria Prevalence over Jos Plateau Area	97
4.2.2	Measles	99
4.2.3	Pneumonia	102
4.2.4	Cerebro-Spinal-Meningitis	104
4.2.5	Tuberculosis	106
4.3	Relationship between Climatic Parameters and Diseases	109
4.3.1	Correlation between Climatic Parameters and Selected Diseases	109
4.3.2	Correlation between Climatic Parameters and Selected Diseases in Five	
	Ecological Zones	109
4.3.3	Implication of Multiple relationships	112
4.3.4	Hypothesis Testing	112

CHAPTER FIVE

5.0	DISCUSSIONS AND SUMMARY OF FINDINGS	116
5.1	Discussion of Results	116
5.1.1	Nature of Climatic Variation in Nigeria	116
5.1.1.2	Trends and Temporal Distribution of Rainfall	117
5.1.1.3	Variability and Trends over Ecological Zones	118
5.1.1.4	Nature of Temperature	120
5.1.1.5	Distribution of Temperature in Ecological Zones	121
5.1.1.6	Distribution of other Significant Climatic Parameters	122
5.1.2	Spatio-Temporal Distribution of Selected Diseases	123

5.1.2.2	Climatic Conditions Suitable for Malaria Transmission	125
5.1.2.3	Malaria Prevalence over Jos Plateau	128
5.1.2.4	Measles	128
5.1.2.5	Pneumonia	130
5.1.2.6	Cerebro-Spinal-Meningitis	131
5.1.2.7	Tuberculosis	132
5.1.8	Relationships between Climatic Parameters and Diseases	133
5.1.3	Correlation between Climatic Parameters and Selected Diseases	
	in the Five Ecological Region	133
5.1.4	Hypothesis Testing	134
5.1.5	Implication of Multiple Relationship	135
5.1.6	Policy Framework based on the Findings of this Study	138
5.2	Summary of Findings	140

CHAPTER SIX

6.0	CONCLUSION, RECOMMENDATIONS AND CONTRIBUTION TO		
	KNOWLEDGE	143	
6.1	Conclusion	143	
6.2	Recommendations	145	
6.3	Contribution to Knowledge	147	
References		148	
Appendix I: Multiple Relationship between Selected Diseases in some Selected States		165	
Appendix II: Standardized Rainfall Anomaly over Ecological Zones		167	
Apper	Appendix III: Mean Maximum Temperature over Ecological Zones 16		

LIST OF TABLES

		Page
Table 2.1	Possible major types of impacts of climate change on	
	human health	21
Table 2.2	Relative impacts of climatic variations with reference	
	to significant climatic parameters	22
Table 2.3	Temperature profile of mosquitos development	40
Table 3.1	Data types, sources and duration with comment	47
Table 3.2	Selected Meteorological Stations in each ecological zone	48
Table 4.1	Correlation coefficient between selected diseases and climatic	
	parameters in Nigeria	109
Table 4.2	Correlation coefficient between selected diseases and climatic	
	parameters (radiation) over ecological zone	110
Table 4.3	Correlation coefficient between selected diseases and climatic	
	parameters (maximum temperature) over ecological zone	110
Table 4.4	Correlation coefficient between selected diseases and climatic	
	parameters (relative humidity) over ecological zone	111
Table 4.5	Correlation coefficient between selected diseases and climatic	
	Parameters (minimum temperature) over ecological zone	111
Table 4.6	R2, F-statistics, probability (p), Adjust R2 and Canonical (CCA)	
	for malaria	112

LIST OF FIGURES

Figure 1.1	Geo-Political Distribution of Nigeria	11
Figure 2.1	Schematic view of the components of the climate system,	
	their processes and interactions	23
Figure 2.2	Interaction of Agent, Host, and Environmental factors	28
Figure 2.3	An idealized complex interaction between global concepts,	
	climate system, ecological system and epidemiology of diseases	29
Figure 3.1	The research design	55
Figure 4.1	Mean annual total rainfall in Nigeria	57
Figure 4.2	Distribution of mean annual-monthly rainfall (mm)	
	for Nigeria for the period 1958-2009	58
Figure 4.3	Rainfall trends over Nigeria (1958-2009)	59
Figure 4.4	Standardized rainfall anomaly over Nigeria (1958-2009)	59
Figure 4.5	Standardized rainfall anomaly over southern Nigeria	60
Figure 4.6	Standardized rainfall anomaly over northern Nigeria	60
Figure 4.7	Map of Nigeria Showing Climatological Stations and their	
	Classification into Ecological Zone	61
Figure 4.8	Standardized rainfall anomaly over Katsina	62
Figure 4.9	Standardized rainfall anomaly over Nguru	62
Figure 4.10	Standardized rainfall anomaly over Maiduguri	63
Figure 4.11	Standardized rainfall anomaly over Sokoto	63
Figure 4.12	Standardized rainfall anomaly over Yelwa	64
Figure 4.13	Standardized rainfall anomaly over Kano	64

Figure 4.14	Standardized rainfall anomaly over Bauchi	65
Figure 4.15	Standardized rainfall anomaly over Lokoja	65
Figure 4.16	Standardized rainfall anomaly over Enugu	66
Figure 4.17	Standardized rainfall anomaly over Minna	66
Figure 4.18	Standardized rainfall anomaly over Ilorin	67
Figure 4.19	Standardized rainfall anomaly over Ondo	67
Figure 4.20	Standardized rainfall anomaly over Oshogbo	68
Figure 4.21	Standardized rainfall anomaly over Ikeja	68
Figure 4.22	Standardized rainfall anomaly over Benin	69
Figure 4.23	Standardized rainfall anomaly over Warri	69
Figure 4.24	Standardized rainfall anomaly over Portharcourt	70
Figure 4.25	Standardized rainfall anomaly over Calabar	70
Figure 4.26	Mean maximum temperature over Nigeria	71
Figure 4.27	Mean minimum temperature over Nigeria	72
Figure 4.28	Trends in Mean maximum temperature over Kano	73
Figure 4.29	Trends in Mean maximum temperature over Lagos	73
Figure 4.30	Mean maximum temperature over Nguru	74
Figure 4.31	Mean maximum temperature over Potiskum	74
Figure 4.32	Mean maximum temperature over Sokoto	75
Figure 4.33	Mean maximum temperature over Kano	75
Figure 4.34	Mean maximum temperature over Gusau	76
Figure 4.35	Mean maximum temperature over Yola	76
Figure 4.36	Mean maximum temperature over Jos	77
Figure 4.37	Mean maximum temperature over Lokoja	77
Figure 4.38	Mean maximum temperature over Kaduna	78

Figure 4.39	Mean maximum temperature over Ikeja	78
Figure 4.40	Mean maximum temperature over Enugu	79
Figure 4.41	Mean maximum temperature over Ondo	79
Figure 4.42	Mean maximum temperature over Warri	80
Figure 4.43	Mean maximum temperature over Calabar	80
Figure 4.44	Mean annual distribution of relative humidity	81
Figure 4.45	Mean distribution of solar radiation (1992-2001)	82
Figure 4.46	Mean sunshine hours distribution in Nigeria	82
Figure 4.47	Mean wind direction (deg.) in Nigeria	83
Figure 4.48	Mean wind speed (m/s) in Nigeria	83
Figure 4.49	Mean annual distribution of malaria	
	in Nigeria (1982-2009)	84
Figure 4.50	Malaria prevalence in Nigeria in 1997	85
Figure 4.51	Malaria prevalence in Nigeria in 1982	85
Figure 4.52	Malaria prevalence in Nigeria in 2008	86
Figure 4.53a	Mean decadal distribution of malaria 1999-2008	87
Figure 4.53b	Mean decadal distribution of malaria 1989-1998	87
Figure 4.53c	Mean decadal distribution of malaria 1978-1988	88
Figure 4.54	Monthly variation of malaria incidence (1992-2009)	88
Figure 4.55	Yearly trends of reported cases of malaria	
	incidence (1981-2009)	89
Figure 4.56a	Monthly Precipitation over Sahel Savannah Ecological Zone	90
Figure 4.56b	Monthly Mean Temperature over Sahel Savannah Ecological Zone	90
Figure 4.56c	Monthly Relative Humidity over Sahel Savannah Ecological Zone	90
Figure 4.57a	Monthly Precipitation over Sudan Savannah Ecological Zone	91

Figure 4.57b	Monthly Mean Temperature over Sudan Savannah Ecological Zone	91
Figure 4.57c	Monthly Relative Humidity over Sudan Savannah Ecological Zone	92
Figure 4.58a	Monthly Precipitation over Guinea Savannah Ecological Zone	93
Figure 4.58b	Monthly Mean Temperature over Guinea Savannah Ecological Zone	93
Figure 4.58c	Monthly Relative Humidity over Guinea Savannah Ecological Zone	94
Figure 4.59a	Monthly Precipitation over Tropical Forest Ecological Zone	94
Figure 4.59b	Monthly Mean Temperature over Tropical Forest Ecological Zone	95
Figure 4.59c	Monthly Relative Humidity over Tropical Forest Ecological Zone	95
Figure 4.60a	Monthly Precipitation over Mangrove Swamp Ecological Zone	96
Figure 4.60b	Monthly Mean Temperature over Mangrove Swamp Ecological Zone	96
Figure 4.60c	Monthly Relative Humidity over Mangrove Swamp Ecological Zone	97
Figure 4.61a	Trends of Malaria and Maximum Temperature over	
	Plateau State of Nigeria (1982-2009)	98
Figure 4.61b	Trends of Malaria and Rainfall over Plateau State of	
	Nigeria (1982-2009)	98
Figure 4.62	Mean annual distribution of measles in Nigeria (1981-2009)	99
Figure 4.63	Yearly distribution of Measles in Nigeria (1992-2009)	100
Figure 4.64	Distribution of Measles in 1997	100
Figure 4.65	Distribution of Measles in 2008	101
Figure 4.66	Mean monthly variation of measles	101
Figure 4.67	Mean spatial distribution of pneumonia in Nigeria (1982-2009)	102
Figure 4.68	Distribution of pneumonia in 2007	103
Figure 4.69	Yearly distribution of pneumonia in Nigeria (1981-2009)	103
Figure 4.70	Mean monthly variation of pneumonia	104
Figure 4.71	Mean spatial distribution of CSM in Nigeria (1982-2009)	105

Figure 4.72	Distribution of CSM in 2008	105
Figure 4.73	Yearly distribution of CSM in Nigeria (1992-2009)	106
Figure 4.74	Mean monthly variation of CSM	106
Figure 4.75	Mean annual distribution of tuberculosis in Nigeria	
	(1982-2009)	107
Figure 4.76	Distribution of tuberculosis in 2008	107
Figure 4.77	Yearly distribution of tuberculosis in Nigeria (1992-2009)	108
Figure 4.78	Mean monthly variation of tuberculosis	108

ABSTRACT

This study examines the impacts of climatic variations on the distributional patterns of malaria, measles, pneumonia, cerebro-spinal-meningitis (CSM), and tuberculosis in different ecological zones of Nigeria. The specific objectives is to: (a) examine the nature of climate variation in Nigeria, (b) identify the spatial and temporal distribution of the selected diseases in Nigeria, (c) investigate the relationships between climatic variations and the prevalence selected diseases occurrence in different ecological zone of Nigeria. Data on climatic parameters such as temperature, rainfall, humidity, radiation and wind from 1958-2009 were obtained from the Nigerian Meteorological Agency (NIMET), while data on incidences of malaria, measles, pneumonia, CSM, and tuberculosis and morbidity and mortality were obtained from Federal Ministry of Health as well as the National Bureau of Statistics (NBS) from 1982-2009. The nature of climatic variation was determined using simple descriptive statistics and dispersion, while time series analysis, contour analysis using density dot method and rainfall anomaly indices were used to determined the spatio-temporal distribution of selected diseases in Nigeria. Pearson correlation method, canonical correlation techniques, polynomial and linear regression methods were used to analyse the relationships between climatic variations and the prevalence selected diseases occurrences in different ecological zones of Nigeria. The results show that the climate characteristics in Nigeria vary in time and space. Three rainfall periods since the middle of the last century were revealed. These include a relatively wet period between 1958 and 1969; a relatively dry period between 1970 and 1994; and a relatively wet period between 1995 and 2009 which shows a period of recovery. Spatially, five rainfall-trend periods were observed for the southern area and three rainfall-trend periods for the northern areas of Nigeria. Dryer conditions prevailed over the sahel, sudan, guinea savannah and slightly over the mangrove swamp forest zones, and wetter conditions prevailed only over the tropical rain forest zone. The climatic conditions suitable for malaria transmission over the various ecological zones decreases from mangrove swamp forest (9-month), tropical forest (8-month), guinea savannah (6-month), sudan savannah (4-month) and sahel savannah (3-month). Temperature analysis also shows evidence of warming in Nigeria (1958-2009). There was an increase from the mean of 33.5°C to 33.7°C for maximum temperature over Kano and 29.4°C to 30.5°C for Lagos. The distribution of other significant climatic parameters such as relative humidity, solar radiation and wind shows values ranging between 80% and above in the southern region and 40%-60% in the northern region; solar radiation of 50.2Wm⁻² in the south while 71.2 Wm⁻² are in the north; average wind speed of 7.5m/s were found in the north and decreases to 3.5m/s in south. The study also revealed a spatio-temporal variability in the distribution of the selected diseases and this was presented by contour analysis. The study shows that the highest incident of malaria occurred in the month of August, while for measles, the highest occurred in the month of March and April. The highest for pneumonia occurred in the month of January, while the highest for CSM occurred in the month of March and for tuberculosis in the month of July. With regard to the result of the relationships between climatic parameters and the selected diseases incidence in the ecological zones. Negative correlation existed between rainfall, minimum temperature and relative humidity. Rainfall correlate weakly with malaria (-0.288) over the sahel region at 95% confidence level; strongly with CSM (-0.805) over the mangrove swamp forest at 99% confidence level. Minimum temperature correlate weakly with CSM (-0.111) over sudan savannah zone (not significant) but strongly with measles (-0.757) at 99% confidence level. Relative humidity correlate weakly with malaria (-0.291) at 99% confidence level and strongly with CSM (-0.873) at 99% confidence level. Positive correlation however existed between maximum temperature and radiation. Maximum temperature correlate weakly with malaria (0.228) over the sahel savannah zone at 95% confidence level. But strongly with CSM (0.805) over tropical forest at 99% confidence level. Similarly, radiation correlate weakly with malaria (0.302) over mangrove swamp forest at 99% confidence level, but strongly with

CSM (0.806) over mangrove swamp forest at 99% confidence level. Finally, the policy framework on the basis of findings of this study, climatic information for improving health through diseases control and preventive behaviour were also highlighted.