EMPIRICAL PRIOR LATENT DIRICHLET ALLOCATION MODEL

dc.contributor.authorAdegoke, M.A.
dc.contributor.authorAyeni, J. O. A.
dc.contributor.authorAdewole, P.A.
dc.date.accessioned2019-09-16T12:38:38Z
dc.date.available2019-09-16T12:38:38Z
dc.date.issued2019-01
dc.description.abstractIn this study, empirical prior Dirichlet allocation (epLDA) model that uses latent semantic indexing framework to derive the priors required for topics computation from data is presented. The parameters of the priors so obtained are related to the parameters of the conventional LDA model using exponential function. The model was implemented and tested with benchmarked data and it achieves a prediction accuracy of 92.15%. It was observed that the epLDA model consistently outperforms the conventional LDA model on different datasets with an average percentage accuracy of 6.33%; this clearly demonstrates the advantage of using side information obtained from data for the computation of the mixture components.en_US
dc.identifier.citationAdegoke, M.A., Ayeni, J. O. A., Adewole, P.A. (2019). EMPIRICAL PRIOR LATENT DIRICHLET ALLOCATION MODEL. Nigerian Journal of Technology (NIJOTECH), Faculty of Engineering, University of Nigeria, Nsukka. 38(1)en_US
dc.identifier.issn0331-8443
dc.identifier.urihttps://ir.unilag.edu.ng/handle/123456789/5574
dc.language.isoenen_US
dc.publisherNigerian Journal of Technology (NIJOTECH), Faculty of Engineering, University of Nigeria, Nsukkaen_US
dc.relation.ispartofseries38;1
dc.subjectLatent Dirichlet allocationen_US
dc.subjectSemantic indexingen_US
dc.subjectEmpirical prioren_US
dc.subjectHidden structuresen_US
dc.subjectPrediction accuracyen_US
dc.titleEMPIRICAL PRIOR LATENT DIRICHLET ALLOCATION MODELen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ADEWOLE14_DIRICHLET_ALLOCATION.pdf
Size:
976.21 KB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: