The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces

dc.contributor.authorAibinu, M. O.
dc.contributor.authorPillay, P.
dc.contributor.authorOlaleru, J.O
dc.contributor.authorMewomo, O. T.
dc.date.accessioned2020-02-20T14:05:29Z
dc.date.available2020-02-20T14:05:29Z
dc.date.issued2018
dc.descriptionStaff publicationsen_US
dc.description.abstractLet K be a nonempty closed convex subset of a Banach space E and T : K ! K be a nonexpansive mapping. Using a viscosity approximation method, we study the implicit midpoint rule of a nonexpansive mapping T. We establish a strong convergence theorem for an iterative algorithm in the framework of uniformly smooth Banach spaces and apply our result to obtain the solutions of an accretive mapping and a variational inequality problem. The numerical example which compares the rates of convergence shows that the iterative algorithm is the most efficient. Our result is unique and the method of proof is of independent interest.en_US
dc.identifier.citationAibinu, M. O.; Pillay, P.; Olaleru, J.O and Mewomo, O. T. (2018). The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces. J. Nonlinear Sci. Appl., 11 , 1374–1391.en_US
dc.identifier.urihttps://ir.unilag.edu.ng/handle/123456789/7755
dc.language.isoenen_US
dc.publisherJournal of Non-Linear Sciences and Applicationen_US
dc.relation.ispartofseriesJ. Nonlinear Sci. Appl.;Vol.11
dc.subjectViscosity techniqueen_US
dc.subjectBanach space Een_US
dc.subjectConvergence theoremen_US
dc.subjectVariational inequality problemen_US
dc.subjectResearch Subject Categories::MATHEMATICSen_US
dc.titleThe implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spacesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article 59.pdf
Size:
905.21 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: