Sequentially Distributed Coalition Formation Game for Throughput Maximization in C-RANs

No Thumbnail Available
Gbenga-Ilori, A.O.
Sanusi, O.I.
Journal Title
Journal ISSN
Volume Title
International Journal of Electronics and Telecommunications
Cloud radio access network (C-RAN) has been proposed as a solution to reducing the huge cost of network upgrade while providing the spectral and energy efficiency needed for the new generation cellular networks. In order to reduce the interference that occur in C-RAN and maximize throughput, this paper proposes a sequentially distributed coalition formation (SDCF) game in which players, in this case the remote radio heads (RRHs), can sequentially join multiple coalitions to maximize their throughput. Contrary to overlapping coalition formation (OCF) game where players contribute fractions of their limited resources to different coalitions, the SDCF game offers better stability by allowing sequential coalition formation depending on the availability of resources and therefore providing a balance between efficient spectrum use and interference management. An algorithm for the proposed model is developed based on the merge-only method. The performance of the proposed algorithm in terms of stability, complexity and convergence to final coalition structure is also investigated. Simulation results show that the proposed SDCF game did not only maximize the throughput in the C-RAN, but it also shows better performances and larger capabilities to manage interference with increasing number of RRHs compared to existing methods.
Coalition game, C-RAN, SDCF, throughput, interference, wireless networks