Preparation and characterization of poly(ethylene glycol)-block-poly[e-(benzyloxycarbonyl)-L-lysine] thin films for biomedical applications

dc.contributor.authorIzunobi, J. U.
dc.contributor.authorGeever, L. M.
dc.contributor.authorHigginbotham, C. L.
dc.date.accessioned2019-08-24T03:33:01Z
dc.date.available2019-08-24T03:33:01Z
dc.date.issued2014
dc.description.abstractThe nanoscale architectures evident in the thin films of self-assembling hybrid block copolymers—which are tailored to inherit the advantageous properties of their constituent synthetic (homo)polymer and polypeptide blocks—have continued to inspire a variety of new applications in different fields, including biomedicine. The thin films of symmetric hybrid block copolymer, a-methoxypoly( ethylene glycol)-block-poly[e-(benzyloxycarbonyl)-L-lysine], MPEG112-b- PLL(Z)17, were prepared by solvent casting in five different solvents and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy, Thermogravimetric analysis, Derivative Thermogravimetric analysis, Differential Scanning Calorimetry, Contact Angle goniometry, Wide-Angle X-ray Diffraction, and Scanning Electron Microscopy. Film thickness was estimated to be 51 ± 23 lmby the ‘‘step-height’’ method, using a thickness gauge. Although no significant change to the block copolymer’s microstructure was observed, its solvent-cast films displayed divergent physical and thermal properties. The resulting cast films proved more thermally stable than the bulk but indicated greater block miscibility. Additionally, the thin films of MPEG112-b-PLL(Z)17 preserved the microphase separation exhibited by the bulk copolymer albeit with appreciable loss of crystallinity. The surface properties of the polymer–air interface were diverse as were the effects of the casting solvents. Oriented equilibrium morphologies are also evident in some of the as-cast thin films.en_US
dc.identifier.urihttps://ir.unilag.edu.ng/handle/123456789/4675
dc.language.isoenen_US
dc.subjectAs-cast thin films, Biopolymers, Diblock copolymers, Equilibrium structures, Polypeptides, Surface topographyen_US
dc.titlePreparation and characterization of poly(ethylene glycol)-block-poly[e-(benzyloxycarbonyl)-L-lysine] thin films for biomedical applicationsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Polymer_Bulletin_2014 Abstract.pdf
Size:
457.98 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: