An Extension of Gregus Fixed Point Theorem
dc.contributor.author | Olaleru, J.O | |
dc.contributor.author | Akewe, H | |
dc.date.accessioned | 2020-02-03T08:32:31Z | |
dc.date.available | 2020-02-03T08:32:31Z | |
dc.date.issued | 2007 | |
dc.description | Staff publications | en_US |
dc.description.abstract | Let C be a closed convex subset of a complete metrizable topological vector space (X,d) and T : C → C a mapping that satisfies d(Tx,Ty) ≤ ad(x, y) + bd(x,Tx) + cd(y,Ty) +ed(y,Tx) + f d(x,Ty) for all x, y ∈ C, where 0 < a < 1, b ≥ 0, c ≥ 0, e ≥ 0, f ≥ 0, and a + b + c + e + f = 1. Then T has a unique fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper.In addition, we use the Mann iteration to approximate the fixed point of T. | en_US |
dc.identifier.citation | Olaleru, J.O and Akewe, H. (2007). An Extension of Gregus Fixed Point Theorem. Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 2007, Article ID 78628, 8. | en_US |
dc.identifier.other | doi:10.1155/2007/78628 | |
dc.identifier.uri | https://ir.unilag.edu.ng/handle/123456789/7605 | |
dc.language.iso | en | en_US |
dc.publisher | Hindawi Publishing Corporation | en_US |
dc.subject | Fixed point | en_US |
dc.subject | Convex subset | en_US |
dc.subject | Complete metrizable | en_US |
dc.subject | Topological space | en_US |
dc.subject | Mann iteration | en_US |
dc.subject | Research Subject Categories::MATHEMATICS | en_US |
dc.title | An Extension of Gregus Fixed Point Theorem | en_US |
dc.type | Article | en_US |