An Extension of Gregus Fixed Point Theorem
dc.contributor.author | Olaleru, J.O | |
dc.contributor.author | Akewe, H | |
dc.date.accessioned | 2015-10-28T16:48:20Z | |
dc.date.available | 2015-10-28T16:48:20Z | |
dc.date.issued | 2006-12-17 | |
dc.description.abstract | Let C be a closed convex subset of a complete metrizable topological vector space (X,d) and T :C→C a mapping that satisfies d(Tx,Ty)≤ad(x,y)+bd(x,Tx)+cd(y,Ty)+ ed(y,Tx)+ fd(x,Ty) for all x,y∈C, where 0<a<1, b≥0, c≥0, e≥0, f ≥0, and a+b+c+e+ f = 1. Then T has a unique fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper. In addition, we use the Mann iteration to approximate the fixed point of T. | en_US |
dc.identifier.citation | Fixed Point Theory and Applications, 2007 (78628), 1-8 | en_US |
dc.identifier.other | doi:10.1155/2007/78628 | |
dc.identifier.uri | http://ir.unilag.edu.ng:8080/xmlui/handle/123456789/153 | |
dc.language.iso | en | en_US |
dc.publisher | Hindawi Publishing Corporation | en_US |
dc.subject | Banach spaces | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Theorems | en_US |
dc.subject | Fixed point theorems | en_US |
dc.title | An Extension of Gregus Fixed Point Theorem | en_US |
dc.type | Article | en_US |