Spectral and Statistical Parameters in Fuzzy Neural Expert Machine for Colorectal Adenomas and Adenocarcinomas Discrimination

No Thumbnail Available
Date
2005
Authors
Nwoye, E. O.
Dlay, S. S.
Woo, W. L.
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of Biomedical Optics--SPIE Transactions on Neural Networks
Abstract
This paper presents a novel method which automatically detects differences in biopsy images of the colorectal polyps, extracts the required histopathology information through Fourier and statistical images analysis of the microscopic images and then classifies the cells into normal adenomas and malignant adenocarcinoma. The images are captured by a CCD camera from a laboratory microscope slide and store in computer using the TIF format. The new system is implemented by fuzzifying image histopathological data as shape and texture descriptors calculated from the spectral analysis and grayscale statistical co-occurrence matrix analysis of the microscopic cell images. These features are then fed into a fuzzy neural network expert classifier to differentiate the images. The novel system has been evaluated using 116 cancers and 88 normal colon polyp images collected from 44 normal patients and 58 cancer patients at random resulted in 96.435% classification accuracy. The breakthrough is that the algorithm is independent of the feature extraction procedure adopted, takes into characteristic associated with other classifiers algorithms
Description
Staff publication
Keywords
Novel method , Biopsy images , Cells , Computer , Research Subject Categories::TECHNOLOGY::Information technology
Citation
Nwoye, E.O., Dlay, S.S., Woo, W.L. (2005). Spectral and Statistical Parameters in Fuzzy Neural Expert Machine for Colorectal Adenomas and Adenocarcinomas Discrimination.