Modified Multistep Iteration for Approximating a General Class of Functions in Locally Convex Spaces
dc.contributor.author | Akewe, H | |
dc.date.accessioned | 2018-09-14T14:44:23Z | |
dc.date.available | 2018-09-14T14:44:23Z | |
dc.date.issued | 2014 | |
dc.description | Staff Publications | en_US |
dc.description.abstract | In this paper, we study the convergence of modifed multistep iterationand use the scheme to approximate the fixed point of a general class of functions introduced by Bosede and Rhoades [5] in a complete metrisable locally convex space. As corollaries, the convergence results for SP and Mann iterations are also established. Moreover, most convergence results in Banach spaces are generalized to complete metrisable locally convex spaces. Our convergence results generalize and extend the results of Berinde [2], Olaleru [11], Phuengrattana and Suantai [13], Ra q [14] among others. 1. | en_US |
dc.identifier.citation | Akewe, H (2014) Modified Multistep Iteration for Approximating a General Class of Functions in Locally Convex Spaces. Acta Math. Univ. Comenianae Vol. LXXXIII, 1, pp. 39–45 | en_US |
dc.identifier.uri | www.kurims.kyoto-u.ac.jp/EMIS/journals/AMUC/_vol-83/_no_1/_.../akewe.pdf | |
dc.identifier.uri | www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/74 | |
dc.identifier.uri | http://ir.unilag.edu.ng:8080/xmlui/handle/123456789/3070 | |
dc.language.iso | en | en_US |
dc.subject | Strong convergence | en_US |
dc.subject | Modified multistep iteration | en_US |
dc.subject | Fixed Points | en_US |
dc.subject | General class of func- tions | en_US |
dc.title | Modified Multistep Iteration for Approximating a General Class of Functions in Locally Convex Spaces | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Modified Multistep Iteration for Approximating a General Class of Functions in Locally Convex Spaces.pdf
- Size:
- 241.17 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Papers
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: