Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients
No Thumbnail Available
Date
2013
Authors
Pellissier, L.
Ndiribe, C.
Dubuis, A.
Pradervand, J. N.
Salamin, N.
Guisan, A.
Rasmann, S.
Journal Title
Journal ISSN
Volume Title
Publisher
Ecology Letters
Abstract
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental
crisis. More diverse plant communities have been postulated to represent a larger functional trait-space,
more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate
environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity
of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations,
we found that the association between butterflies and their host plants is highly phylogenetically
structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic
diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant
phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological
gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured
turnover of plant traits as well as environmental variables.
Description
Keywords
Butterflies, functional diversity, plant defence, specific leaf area, leaf palatability, phylogenetic conservatism.
Citation
Pellissier, L., Ndiribe, C., Dubuis, A., Pradervand, J.N., Salamin, N., Guisan, A. and Rasmann, S., 2013. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecology letters, 16(5), pp.600-608.